Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114045, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38578826

RESUMEN

Autoantibodies against the enzyme transglutaminase 2 (TG2) are characteristic of celiac disease (CeD), and TG2-specific immunoglobulin (Ig) A plasma cells are abundant in gut biopsies of patients. Here, we describe the corresponding population of autoreactive B cells in blood. Circulating TG2-specific IgA cells are present in untreated patients on a gluten-containing diet but not in controls. They are clonally related to TG2-specific small intestinal plasma cells, and they express gut-homing molecules, indicating that they are plasma cell precursors. Unlike other IgA-switched cells, the TG2-specific cells are negative for CD27, placing them in the double-negative (IgD-CD27-) category. They have a plasmablast or activated memory B cell phenotype, and they harbor fewer variable region mutations than other IgA cells. Based on their similarity to naive B cells, we propose that autoreactive IgA cells in CeD are generated mainly through chronic recruitment of naive B cells via an extrafollicular response involving gluten-specific CD4+ T cells.


Asunto(s)
Linfocitos B , Enfermedad Celíaca , Proteínas de Unión al GTP , Inmunoglobulina A , Células Plasmáticas , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/patología , Humanos , Transglutaminasas/inmunología , Transglutaminasas/metabolismo , Inmunoglobulina A/inmunología , Inmunoglobulina A/metabolismo , Inmunoglobulina A/sangre , Linfocitos B/inmunología , Linfocitos B/metabolismo , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Proteínas de Unión al GTP/inmunología , Proteínas de Unión al GTP/metabolismo , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Adulto , Masculino , Femenino , Persona de Mediana Edad , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Glútenes/inmunología
2.
Gastroenterology ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38552723

RESUMEN

BACKGROUND & AIMS: The treatment of celiac disease (CeD) with gluten-free diet (GFD) normalizes gut inflammation and disease-specific antibodies. CeD patients have HLA-restricted, gluten-specific T cells persisting in the blood and gut even after decades of GFD, which are reactivated and disease driving upon gluten exposure. Our aim was to examine the transition of activated gluten-specific T cells into a pool of persisting memory T cells concurrent with normalization of clinically relevant biomarkers during the first year of treatment. METHODS: We followed 17 CeD patients during their initial GFD year, leading to disease remission. We assessed activation and frequency of gluten-specific CD4+ blood and gut T cells with HLA-DQ2.5:gluten tetramers and flow cytometry, disease-specific serology, histology, and symptom scores. We assessed gluten-specific blood T cells within the first 3 weeks of GFD in 6 patients and serology in an additional 9 patients. RESULTS: Gluten-specific CD4+ T cells peaked in blood at day 14 while up-regulating Bcl-2 and down-regulating Ki-67 and then decreased in frequency within 10 weeks of GFD. CD38, ICOS, HLA-DR, and Ki-67 decreased in gluten-specific cells within 3 days. PD-1, CD39, and OX40 expression persisted even after 12 months. IgA-transglutaminase 2 decreased significantly within 4 weeks. CONCLUSIONS: GFD induces rapid changes in the phenotype and number of gluten-specific CD4+ blood T cells, including a peak of nonproliferating, nonapoptotic cells at day 14. Subsequent alterations in T-cell phenotype associate with the quiescent but chronic nature of treated CeD. The rapid changes affecting gluten-specific T cells and disease-specific antibodies offer opportunities for clinical trials aiming at developing nondietary treatments for patients with newly diagnosed CeD.

3.
Sci Adv ; 9(4): eade5800, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36696493

RESUMEN

CD4+ T cells specific for cereal gluten proteins are key players in celiac disease (CeD) pathogenesis. While several CeD-relevant gluten T cell epitopes have been identified, epitopes recognized by a substantial proportion of gluten-reactive T cells remain unknown. The identification of such CeD-driving gluten epitopes is important for the food industry and in clinical settings. Here, we have combined the knowledge of a distinct phenotype of gluten-reactive T cells and key features of known gluten epitopes for the discovery of unknown epitopes. We tested 42 wheat gluten-reactive T cell clones, isolated on the basis of their distinct phenotype and with no reactivity to known epitopes, against a panel of synthetic peptides bioinformatically identified from a wheat gluten protein database. We were able to assign reactivity to 10 T cell clones and identified a 9-nucleotide oligomer core region of five previously uncharacterized gliadin/glutenin epitopes. This work represents an advance in the effort to identify CeD-driving gluten epitopes.


Asunto(s)
Enfermedad Celíaca , Humanos , Enfermedad Celíaca/metabolismo , Epítopos de Linfocito T , Glútenes , Gliadina/genética , Gliadina/metabolismo , Péptidos/metabolismo
5.
Science ; 376(6590): eabi9591, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35258337

RESUMEN

In this work, we find that CD8+ T cells expressing inhibitory killer cell immunoglobulin-like receptors (KIRs) are the human equivalent of Ly49+CD8+ regulatory T cells in mice and are increased in the blood and inflamed tissues of patients with a variety of autoimmune diseases. Moreover, these CD8+ T cells efficiently eliminated pathogenic gliadin-specific CD4+ T cells from the leukocytes of celiac disease patients in vitro. We also find elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 patients, correlating with disease severity and vasculitis. Selective ablation of Ly49+CD8+ T cells in virus-infected mice led to autoimmunity after infection. Our results indicate that in both species, these regulatory CD8+ T cells act specifically to suppress pathogenic T cells in autoimmune and infectious diseases.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Animales , Linfocitos T CD8-positivos , Humanos , Ratones , Receptores KIR , Linfocitos T Reguladores
6.
Adv Sci (Weinh) ; 9(10): e2104766, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119226

RESUMEN

The pathogenic immune response in celiac disease (CeD) is orchestrated by phenotypically distinct CD4+ T cells that recognize gluten epitopes in the context of disease-associated HLA-DQ allotypes. Cells with the same distinct phenotype, but with elusive specificities, are increased across multiple autoimmune conditions. Here, whether sorting of T cells based on their distinct phenotype (Tphe cells) yields gluten-reactive cells in CeD is tested. The method's efficiency is benchmarked by parallel isolation of gluten-reactive T cells (Ttet cells), using HLA-DQ:gluten peptide tetramers. From gut biopsies of 12 untreated HLA-DQ2.5+ CeD patients, Ttet+ /Tphe+ , Ttet- /Tphe+ , and Ttet- /Tphe- cells are sorted for single-cell T-cell receptor (TCR)-sequencing (n = 8) and T-cell clone (TCC)-generation (n = 5). The generated TCCs are TCR sequenced and tested for their reactivity against deamidated gluten. Gluten-reactivity is observed in 91.2% of Ttet+ /Tphe+ TCCs, 65.3% of Ttet- /Tphe+ TCCs and 0% of Ttet- /Tphe- TCCs. TCR sequencing reveals clonal expansion and sequence sharing across patients, features reflecting antigen-driven responses. The feasibility to isolate antigen-specific CD4+ T cells by the sole use of phenotypic markers in CeD outlines a potential avenue for characterizing disease-driving CD4+ T cells in autoimmune conditions.


Asunto(s)
Enfermedad Celíaca , Autoinmunidad , Linfocitos T CD4-Positivos/patología , Enfermedad Celíaca/genética , Enfermedad Celíaca/patología , Humanos , Fenotipo , Linfocitos T/patología
7.
Adv Sci (Weinh) ; 8(21): e2102778, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34495570

RESUMEN

Gluten-specific CD4+ T cells being drivers of celiac disease (CeD) are obvious targets for immunotherapy. Little is known about how cell markers harnessed for T-cell-directed therapy can change with time and upon activation in CeD and other autoimmune conditions. In-depth characterization of gluten-specific CD4+ T cells and CeD-associated (CD38+ and CD103+ ) CD8+ and γδ+ T cells in blood of treated CeD patients undergoing a 3 day gluten challenge is reported. The phenotypic profile of gluten-specific cells changes profoundly with gluten exposure and the cells adopt the profile of gluten-specific cells in untreated disease (CD147+ , CD70+ , programmed cell death protein 1 (PD-1)+ , inducible T-cell costimulator (ICOS)+ , CD28+ , CD95+ , CD38+ , and CD161+ ), yet with some markers being unique for day 6 cells (C-X-C chemokine receptor type 6 (CXCR6), CD132, and CD147) and with integrin α4ß7, C-C motif chemokine receptor 9 (CCR9), and CXCR3 being expressed stably at baseline and day 6. Among gluten-specific CD4+ T cells, 52% are CXCR5+ at baseline, perhaps indicative of germinal-center reactions, while on day 6 all are CXCR5- . Strikingly, the phenotypic profile of gluten-specific CD4+ T cells on day 6 largely overlaps with that of CeD-associated (CD38+ and CD103+ ) CD8+ and γδ+ T cells. The antigen-induced shift in phenotype of CD4+ T cells being shared with other disease-associated T cells is relevant for development of T-cell-directed therapies.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Enfermedad Celíaca/terapia , Glútenes/inmunología , ADP-Ribosil Ciclasa 1/metabolismo , Antígenos CD/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Enfermedad Celíaca/inmunología , Glútenes/química , Antígenos HLA-DQ/química , Antígenos HLA-DQ/inmunología , Humanos , Inmunoterapia , Cadenas alfa de Integrinas/metabolismo , Linfocitos Intraepiteliales/citología , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Fenotipo , Multimerización de Proteína
9.
Front Immunol ; 12: 639672, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33927715

RESUMEN

Gluten-specific CD4+ T cells are drivers of celiac disease (CeD). Previous studies of gluten-specific T-cell receptor (TCR) repertoires have found public TCRs shared across multiple individuals, biased usage of particular V-genes and conserved CDR3 motifs. The CDR3 motifs within the gluten-specific TCR repertoire, however, have not been systematically investigated. In the current study, we analyzed the largest TCR database of gluten-specific CD4+ T cells studied so far consisting of TCRs of 3122 clonotypes from 63 CeD patients. We established a TCR database from CD4+ T cells isolated with a mix of HLA-DQ2.5:gluten tetramers representing four immunodominant gluten epitopes. In an unbiased fashion we searched by hierarchical clustering for common CDR3 motifs among 2764 clonotypes. We identified multiple CDR3α, CDR3ß, and paired CDR3α:CDR3ß motif candidates. Among these, a previously known conserved CDR3ß R-motif used by TRAV26-1/TRBV7-2 TCRs specific for the DQ2.5-glia-α2 epitope was the most prominent motif. Furthermore, we identified the epitope specificity of altogether 16 new CDR3α:CDR3ß motifs by comparing with TCR sequences of 231 T-cell clones with known specificity and TCR sequences of cells sorted with single HLA-DQ2.5:gluten tetramers. We identified 325 public TCRα and TCRß sequences of which 145, 102 and 78 belonged to TCRα, TCRß and paired TCRαß sequences, respectively. While the number of public sequences was depended on the number of clonotypes in each patient, we found that the proportion of public clonotypes from the gluten-specific TCR repertoire of given CeD patients appeared to be stable (median 37%). Taken together, we here demonstrate that the TCR repertoire of CD4+ T cells specific to immunodominant gluten epitopes in CeD is diverse, yet there is clearly biased V-gene usage, presence of public TCRs and existence of conserved motifs of which R-motif is the most prominent.


Asunto(s)
Secuencias de Aminoácidos/genética , Linfocitos T CD4-Positivos/metabolismo , Glútenes/genética , Receptores de Antígenos de Linfocitos T/genética , Enfermedad Celíaca/genética , Regiones Determinantes de Complementariedad/genética , Epítopos de Linfocito T/genética , Genes Codificadores de la Cadena beta de los Receptores de Linfocito T/genética , Antígenos HLA-DQ/genética , Humanos , Epítopos Inmunodominantes/genética , Activación de Linfocitos/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética
10.
Mucosal Immunol ; 14(4): 842-851, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33654213

RESUMEN

Gut intraepithelial γδ and CD8+ αß T lymphocytes have been connected to celiac disease (CeD) pathogenesis. Based on the previous observation that activated (CD38+), gut-homing (CD103+) γδ and CD8+ αß T cells increase in blood upon oral gluten challenge, we wanted to shed light on the pathogenic involvement of these T cells by examining the clonal relationship between cells of blood and gut during gluten exposure. Of 20 gluten-challenged CeD patients, 8 and 10 had increase in (CD38+CD103+) γδ and CD8+ αß T cells, respectively, while 16 had increase in gluten-specific CD4+ T cells. We obtained γδ and αß TCR sequences of >2500 single cells from blood and gut of 5 patients, before and during challenge. We observed extensive sharing between blood and gut γδ and CD8+ αß T-cell clonotypes even prior to gluten challenge. In subjects with challenge-induced surge of γδ and/or CD8+ αß T cells, as larger populations of cells analyzed, we observed more expanded clonotypes and clonal sharing, yet no discernible TCR similarities between expanded and/or shared clonotypes. Thus, CD4+ T cells appear to drive expansion of clonally diverse γδ or CD8+ αß T-cell clonotypes that may not be specific for the gluten antigen.


Asunto(s)
Antígenos CD/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Enfermedad Celíaca/etiología , Evolución Clonal/inmunología , Cadenas alfa de Integrinas/metabolismo , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Enfermedad Celíaca/metabolismo , Enfermedad Celíaca/patología , Evolución Clonal/genética , Glútenes/inmunología , Humanos , Inmunohistoquímica , Inmunofenotipificación , Recuento de Linfocitos , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
11.
Eur J Immunol ; 51(6): 1542-1545, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33559929

RESUMEN

We compared the αß T-cell receptor repertoires of CD8+ αß intraepithelial lymphocytes from celiac disease patients and healthy subjects by single-cell sequencing. We demonstrate that the repertoires of untreated celiac disease patients were more polyclonal and more diverse than what was observed in both treated patients and healthy subjects.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Enfermedad Celíaca/inmunología , Epitelio/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Biodiversidad , Células Cultivadas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de la Célula Individual , Transcriptoma
12.
bioRxiv ; 2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-34981055

RESUMEN

Previous reports show that Ly49 + CD8 + T cells can suppress autoimmunity in mouse models of autoimmune diseases. Here we find a markedly increased frequency of CD8 + T cells expressing inhibitory Killer cell Immunoglobulin like Receptors (KIR), the human equivalent of the Ly49 family, in the blood and inflamed tissues of various autoimmune diseases. Moreover, KIR + CD8 + T cells can efficiently eliminate pathogenic gliadin-specific CD4 + T cells from Celiac disease (CeD) patients' leukocytes in vitro . Furthermore, we observe elevated levels of KIR + CD8 + T cells, but not CD4 + regulatory T cells, in COVID-19 and influenza-infected patients, and this correlates with disease severity and vasculitis in COVID-19. Expanded KIR + CD8 + T cells from these different diseases display shared phenotypes and similar T cell receptor sequences. These results characterize a regulatory CD8 + T cell subset in humans, broadly active in both autoimmune and infectious diseases, which we hypothesize functions to control self-reactive or otherwise pathogenic T cells. ONE-SENTENCE SUMMARY: Here we identified KIR + CD8 + T cells as a regulatory CD8 + T cell subset in humans that suppresses self-reactive or otherwise pathogenic CD4 + T cells.

13.
HLA ; 95(3): 169-178, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31891448

RESUMEN

To develop better vaccines and more targeted treatments for cancer and autoimmune disorders, the disease-specific T cells and their cognate antigens need to be better characterized. For more than two decades, peptide-major histocompatibility complex (pMHC) tetramers and flow cytometry have been the gold standard for detection of CD8+ and CD4+ T cells specific to antigens in the context of MHC class I and class II, respectively. Nonetheless, more recent studies combining such reagents with mass cytometry, that is, cytometry by time of flight (CyTOF), have offered far more comprehensive profiling of antigen-specific T-cell responses. In addition, mass cytometry has enabled ex vivo screening of CD8+ T-cell reactivities against hundreds of MHC class I restricted candidate epitopes. MHC class II molecules, on the other hand, have been challenging to combine with mass cytometry as they are more complex and bind with lower affinities to cognate T-cell receptors than MHC class I molecules. In this review, I discuss how techniques originally developed to improve the staining capacity of pMHC tetramers in flow cytometry led to the successful combination of such reagents with mass cytometry. Especially, I will highlight very recent advances facilitating the combination with pMHC class II tetramers. Together, these mass cytometry-based studies can help develop more targeted treatments for cancer and autoimmune disorders.


Asunto(s)
Linfocitos T CD8-positivos , Complejo Mayor de Histocompatibilidad , Alelos , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Péptidos
14.
Mucosal Immunol ; 13(2): 313-321, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31728027

RESUMEN

A hallmark of celiac disease (CeD), a chronic condition driven by cereal gluten exposure, is increase of gut intraepithelial γδ T cells. This may indicate pathogenic involvement of γδ T cells and existence of disease-specific γδ T-cell receptors (TCRs) recognizing defined antigen(s). We performed high-throughput and paired γδ TCR sequencing of single intraepithelial γδ T cells of untreated CeD patients (n = 8; 1821 cells), CeD patients treated with a gluten-free diet (n = 5; 436 cells) and controls (n = 7; 1068 cells). We found that CeD patients, both untreated and treated, had larger and more diverse γδ TCR repertoires, more frequent usage of TRDV1 and TRDV3 and different patterns of TCRγ/TCRδ-pairing compared with controls. Although we observed no public CDR3δ sequences, there were several public CDR3γ sequences-many of which were shared by not only the CeD patients, but also by the controls. These public CDR3s were characterized by few N/P nucleotide insertions with germline and near-germline configuration, hence being easy to generate. Previous findings of CeD-specific CDR3 motifs were not replicated. Thus, being unable to raise evidence for CeD-specific γδ TCRs in this first large, paired γδ TCR single-cell sequencing study, we project challenges for identification of CeD-relevant γδ TCR ligands.


Asunto(s)
Enfermedad Celíaca/inmunología , Duodeno/fisiología , Mutación de Línea Germinal/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Linfocitos T/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Autoantígenos/inmunología , Biodiversidad , Biopsia , Femenino , Glútenes/inmunología , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Análisis de la Célula Individual
15.
United European Gastroenterol J ; 7(10): 1337-1344, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31839959

RESUMEN

Background: Increasing efforts are being put into new treatment options for coeliac disease (CeD), a chronic disorder of the small intestine induced by gluten. Interleukin-2 (IL-2) and gluten-specific CD4 + T cells increase in the blood after four hours and six days, respectively, following a gluten challenge in CeD patients. These responses are unique to CeD and are not seen in controls. We aimed to evaluate different markers reflecting a recall response to gluten exposure that may be used to monitor therapy. Methods: CeD patients on a gluten-free diet underwent a one- (n = 6) or three-day (n = 7) oral gluten challenges. We collected blood samples at several time points between baseline and day 8, and monitored gluten-specific CD4 + T cells for their frequency and CD38 expression using HLA-DQ:gluten tetramers. We assessed the IL-2 concentration in plasma four hours after the first gluten intake. Results: The frequency of gut-homing, tetramer-binding, CD4 + effector memory T (tetramer + ß7 + TEM) cells and the IL-2 concentration measured shortly after the first dose of gluten increased significantly after the one- and three-day gluten challenges, but large interindividual differences were exhibited. The frequency of tetramer + ß7 + TEM plateaued between days 6 and 8 and was lower after the one-day challenge. We observed a consistent increase in CD38 expression on tetramer + ß7 + TEM cells and did not find a significant difference between the one- and three-day challenges. Conclusions: The optimal time points for monitoring therapy response in CeD after a three-day oral gluten challenge is four hours for plasma IL-2 or six to eight days for the frequency of tetramer + ß7 + TEM cells, but both these parameters involved large interindividual differences. In contrast, CD38 expression on tetramer + ß7 + TEM cells increased uniformly and irrespectively of the length of gluten challenge, suggesting that this parameter is more suited for monitoring drug efficacy in clinical trials for CeD.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Enfermedad Celíaca/etiología , Enfermedad Celíaca/metabolismo , Glútenes/inmunología , Glicoproteínas de Membrana/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , ADP-Ribosil Ciclasa 1/genética , Adulto , Anciano , Anticuerpos/inmunología , Biomarcadores , Enfermedad Celíaca/diagnóstico , Citocinas/metabolismo , Femenino , Expresión Génica , Glútenes/efectos adversos , Antígenos HLA/genética , Antígenos HLA/inmunología , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Masculino , Glicoproteínas de Membrana/genética , Persona de Mediana Edad , Unión Proteica , Adulto Joven
16.
Trends Mol Med ; 25(10): 836-852, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31331739

RESUMEN

Few therapeutic and diagnostic tools specifically aim at T cells in autoimmune disorders, but are T cells a narrow target in these diseases? Lessons may be learned from celiac disease (CeD), one of the few autoimmune disorders where the T cell driving antigens are known, i.e. dietary gluten proteins. T cell clonotypes specific to gluten are expanded, persist for decades and express a distinct phenotype in CeD patients. Cells with this phenotype are increased also in other autoimmune conditions. Accordingly, disease-specific CD4+ T cells form an immunological scar in CeD and probably other autoimmune disorders. We discuss approaches how such T cells may be targeted for better treatment and diagnosis via their antigen specificity or via their expression of characteristic phenotypic markers.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/terapia , Animales , Enfermedad Celíaca/inmunología , Glútenes/inmunología , Humanos
17.
Nat Med ; 25(5): 734-737, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30911136

RESUMEN

Combining HLA-DQ-gluten tetramers with mass cytometry and RNA sequencing analysis, we find that gluten-specific CD4+ T cells in the blood and intestines of patients with celiac disease display a surprisingly rare phenotype. Cells with this phenotype are also elevated in patients with systemic sclerosis and systemic lupus erythematosus, suggesting a way to characterize CD4+ T cells specific for disease-driving antigens in multiple autoimmune conditions.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Linfocitos T CD4-Positivos/inmunología , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/clasificación , Glútenes/inmunología , Antígenos HLA-DQ/inmunología , Humanos , Inmunofenotipificación , Intestinos/inmunología , Lupus Eritematoso Sistémico/inmunología , Esclerodermia Sistémica/inmunología , Subgrupos de Linfocitos T/clasificación , Subgrupos de Linfocitos T/inmunología
18.
J Biol Chem ; 294(3): 941-952, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30455354

RESUMEN

Celiac disease (CeD) provides an opportunity to study the specificity underlying human T-cell responses to an array of similar epitopes presented by the same human leukocyte antigen II (HLA-II) molecule. Here, we investigated T-cell responses to the two immunodominant and highly homologous HLA-DQ2.5-restricted gluten epitopes, DQ2.5-glia-α1a (PFPQPELPY) and DQ2.5-glia-ω1 (PFPQPEQPF). Using HLA-DQ2.5-DQ2.5-glia-α1a and HLA-DQ2.5-DQ2.5-glia-ω1 tetramers and single-cell αß T-cell receptor (TCR) sequencing, we observed that despite similarity in biased variable-gene usage in the TCR repertoire responding to these nearly identical peptide-HLA-II complexes, most of the T cells are specific for either of the two epitopes. To understand the molecular basis of this exquisite fine specificity, we undertook Ala substitution assays revealing that the p7 residue (Leu/Gln) is critical for specific epitope recognition by both DQ2.5-glia-α1a- and DQ2.5-glia-ω1-reactive T-cell clones. We determined high-resolution binary crystal structures of HLA-DQ2.5 bound to DQ2.5-glia-α1a (2.0 Å) and DQ2.5-glia-ω1 (2.6 Å). These structures disclosed that differences around the p7 residue subtly alter the neighboring substructure and electrostatic properties of the HLA-DQ2.5-peptide complex, providing the fine specificity underlying the responses against these two highly homologous gluten epitopes. This study underscores the ability of TCRs to recognize subtle differences in the peptide-HLA-II landscape in a human disease setting.


Asunto(s)
Presentación de Antígeno , Epítopos de Linfocito T/inmunología , Glútenes/inmunología , Antígenos HLA-DQ/inmunología , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Femenino , Humanos , Masculino
19.
J Clin Invest ; 128(6): 2642-2650, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29757191

RESUMEN

Little is known about the repertoire dynamics and persistence of pathogenic T cells in HLA-associated disorders. In celiac disease, a disorder with a strong association with certain HLA-DQ allotypes, presumed pathogenic T cells can be visualized and isolated with HLA-DQ:gluten tetramers, thereby enabling further characterization. Single and bulk populations of HLA-DQ:gluten tetramer-sorted CD4+ T cells were analyzed by high-throughput DNA sequencing of rearranged TCR-α and -ß genes. Blood and gut biopsy samples from 21 celiac disease patients, taken at various stages of disease and in intervals of weeks to decades apart, were examined. Persistence of the same clonotypes was seen in both compartments over decades, with up to 53% overlap between samples obtained 16 to 28 years apart. Further, we observed that the recall response following oral gluten challenge was dominated by preexisting CD4+ T cell clonotypes. Public features were frequent among gluten-specific T cells, as 10% of TCR-α, TCR-ß, or paired TCR-αß amino acid sequences of total 1813 TCRs generated from 17 patients were observed in 2 or more patients. In established celiac disease, the T cell clonotypes that recognize gluten are persistent for decades, making up fixed repertoires that prevalently exhibit public features. These T cells represent an attractive therapeutic target.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Enfermedad Celíaca/inmunología , Glútenes/inmunología , Antígenos HLA-DQ/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Enfermedad Celíaca/patología , Femenino , Estudios de Seguimiento , Humanos , Masculino
20.
Am J Pathol ; 188(7): 1563-1579, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29684362

RESUMEN

Global characterization of tissue proteomes from small amounts of biopsy material has become feasible because of advances in mass spectrometry and bioinformatics tools. In celiac disease (CD), dietary gluten induces an immune response that is accompanied by pronounced remodeling of the small intestine. Removal of gluten from the diet abrogates the immune response, and the tissue architecture normalizes. In this study, differences in global protein expression of small intestinal biopsy specimens from CD patients were quantified by analyzing formalin-fixed, paraffin-embedded material using liquid chromatography-mass spectrometry and label-free protein quantitation. Protein expression was compared in biopsy specimens collected from the same patients before and after 1-year treatment with gluten-free diet (n = 10) or before and after 3-day gluten provocation (n = 4). Differential expression of proteins in particular from mature enterocytes, neutrophils, and plasma cells could distinguish untreated from treated CD mucosa, and Ig variable region IGHV5-51 expression was found to serve as a CD-specific marker of ongoing immune activation. In patients who had undergone gluten challenge, coordinated up-regulation of wound response proteins, including the CD autoantigen transglutaminase 2, was observed. Our study provides a global and unbiased assessment of antigen-driven changes in protein expression in the celiac intestinal mucosa.


Asunto(s)
Biomarcadores/análisis , Enfermedad Celíaca/complicaciones , Enfermedades Intestinales/diagnóstico , Intestino Delgado/metabolismo , Espectrometría de Masas/métodos , Proteoma/análisis , Adulto , Dieta Sin Gluten , Femenino , Humanos , Enfermedades Intestinales/etiología , Enfermedades Intestinales/metabolismo , Intestino Delgado/patología , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA