Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 16(6): e1008894, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32598340

RESUMEN

Meiotic crossovers (COs) are important for reshuffling genetic information between homologous chromosomes and they are essential for their correct segregation. COs are unevenly distributed along chromosomes and the underlying mechanisms controlling CO localization are not well understood. We previously showed that meiotic COs are mis-localized in the absence of AXR1, an enzyme involved in the neddylation/rubylation protein modification pathway in Arabidopsis thaliana. Here, we report that in axr1-/-, male meiocytes show a strong defect in chromosome pairing whereas the formation of the telomere bouquet is not affected. COs are also redistributed towards subtelomeric chromosomal ends where they frequently form clusters, in contrast to large central regions depleted in recombination. The CO suppressed regions correlate with DNA hypermethylation of transposable elements (TEs) in the CHH context in axr1-/- meiocytes. Through examining somatic methylomes, we found axr1-/- affects DNA methylation in a plant, causing hypermethylation in all sequence contexts (CG, CHG and CHH) in TEs. Impairment of the main pathways involved in DNA methylation is epistatic over axr1-/- for DNA methylation in somatic cells but does not restore regular chromosome segregation during meiosis. Collectively, our findings reveal that the neddylation pathway not only regulates hormonal perception and CO distribution but is also, directly or indirectly, a major limiting pathway of TE DNA methylation in somatic cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cromosomas de las Plantas/genética , Metilación de ADN , Meiosis/genética , Proteínas de Arabidopsis/genética , Emparejamiento Cromosómico , Segregación Cromosómica , Intercambio Genético , Roturas del ADN de Doble Cadena , Elementos Transponibles de ADN/genética , Técnicas de Inactivación de Genes , Plantas Modificadas Genéticamente
2.
Methods Mol Biol ; 2061: 303-318, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31583668

RESUMEN

This chapter provides a detailed description of TILLING and CRISPR-Cas9 approaches for the purpose of studying genes/factors involved in meiotic recombination in the polyploid species B. napus. The TILLING approach involves the screening and identification of EMS-mutagenized M2 B. napus plants. The strategy for high-throughput plant pooling, the set up for microfluidic PCR and sequencing is provided and the parameters for the analysis of sequence results and the detection of mutants are explained. The CRISPR-Cas system relies on the optimal design of guide RNAs and their efficient expression. The procedure for the generation and detection of knockout mutants is described with the aims to simultaneously target homologous genes.


Asunto(s)
Brassica/genética , Miosis , Mutación , Poliploidía , Sistemas CRISPR-Cas , Edición Génica , Genoma de Planta , Genotipo , Recombinación Genética , Análisis de Secuencia de ADN , Transformación Genética
3.
Plant J ; 95(2): 385-396, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29681056

RESUMEN

During meiotic prophase I chromosomes undergo dramatic conformational changes that accompany chromosome condensation, pairing and recombination between homologs. These changes include the anchoring of telomeres to the nuclear envelope and their clustering to form a bouquet. In plants, these events have been studied and illustrated in intact meiocytes of species with large genomes. Arabidopsis thaliana is an excellent genetic model in which major molecular pathways that control synapsis and recombination between homologs have been uncovered. Yet the study of chromosome dynamics is hampered by current cytological methods that disrupt the three-dimensional (3D) architecture of the nucleus. Here we set up a protocol to preserve the 3D configuration of A. thaliana meiocytes. We showed that this technique is compatible with the use of a variety of antibodies that label structural and recombination proteins and were able to highlight the presence of clustered synapsis initiation centers at the nuclear periphery. By using fluorescence in situ hybridization we also studied the behavior of chromosomes during pre-meiotic G2 and prophase I, revealing the existence of a telomere bouquet during A. thaliana male meiosis. In addition we showed that the number of telomeres in a bouquet and its volume vary greatly, thus revealing the complexity of telomere behavior during meiotic prophase I. Finally, by using probes that label subtelomeric regions of individual chromosomes, we revealed differential localization behaviors of chromosome ends. Our protocol opens new areas of research for investigating chromosome dynamics in A. thaliana meiocytes.


Asunto(s)
Arabidopsis/genética , Cromosomas de las Plantas/genética , Meiosis/genética , Recombinación Genética/genética , Imagenología Tridimensional/métodos , Profase , Telómero/metabolismo
4.
Development ; 144(15): 2810-2823, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28684624

RESUMEN

In vertebrates, cranial placodes contribute to all sense organs and sensory ganglia and arise from a common pool of Six1/Eya2+ progenitors. Here we dissect the events that specify ectodermal cells as placode progenitors using newly identified genes upstream of the Six/Eya complex. We show in chick that two different tissues, namely the lateral head mesoderm and the prechordal mesendoderm, gradually induce placode progenitors: cells pass through successive transcriptional states, each identified by distinct factors and controlled by different signals. Both tissues initiate a common transcriptional state but over time impart regional character, with the acquisition of anterior identity dependent on Shh signalling. Using a network inference approach we predict the regulatory relationships among newly identified transcription factors and verify predicted links in knockdown experiments. Based on this analysis we propose a new model for placode progenitor induction, in which the initial induction of a generic transcriptional state precedes regional divergence.


Asunto(s)
Transducción de Señal/fisiología , Vertebrados/embriología , Animales , Comunicación Celular/genética , Comunicación Celular/fisiología , Embrión de Pollo , Pollos , Ectodermo/citología , Ectodermo/embriología , Ectodermo/metabolismo , Electroporación , Ganglios Sensoriales/citología , Ganglios Sensoriales/embriología , Ganglios Sensoriales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Análisis de Secuencia por Matrices de Oligonucleótidos , Codorniz , Órganos de los Sentidos/citología , Órganos de los Sentidos/embriología , Órganos de los Sentidos/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vertebrados/metabolismo
6.
Nature ; 530(7591): 495-8, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26886796

RESUMEN

The orientation of cell division along the long axis of the interphase cell--the century-old Hertwig's rule--has profound roles in tissue proliferation, morphogenesis, architecture and mechanics. In epithelial tissues, the shape of the interphase cell is influenced by cell adhesion, mechanical stress, neighbour topology, and planar polarity pathways. At mitosis, epithelial cells usually adopt a rounded shape to ensure faithful chromosome segregation and to promote morphogenesis. The mechanisms underlying interphase cell shape sensing in tissues are therefore unknown. Here we show that in Drosophila epithelia, tricellular junctions (TCJs) localize force generators, pulling on astral microtubules and orienting cell division via the Dynein-associated protein Mud independently of the classical Pins/Gαi pathway. Moreover, as cells round up during mitosis, TCJs serve as spatial landmarks, encoding information about interphase cell shape anisotropy to orient division in the rounded mitotic cell. Finally, experimental and simulation data show that shape and mechanical strain sensing by the TCJs emerge from a general geometric property of TCJ distributions in epithelial tissues. Thus, in addition to their function as epithelial barrier structures, TCJs serve as polarity cues promoting geometry and mechanical sensing in epithelial tissues.


Asunto(s)
Forma de la Célula , Drosophila melanogaster/citología , Células Epiteliales/citología , Uniones Intercelulares , Interfase , Mitosis , Animales , Proteínas de Ciclo Celular , Polaridad Celular , Proteínas de Drosophila/metabolismo , Células Epiteliales/metabolismo , Epitelio/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo
8.
Nat Cell Biol ; 17(11): 1388-400, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26458247

RESUMEN

At the onset of meiosis, each chromosome needs to find its homologue and pair to ensure proper segregation. In Drosophila, pairing occurs during the mitotic cycles preceding meiosis. Here we show that germ cell nuclei undergo marked movements during this developmental window. We demonstrate that microtubules and Dynein are driving nuclear rotations and are required for centromere pairing and clustering. We further found that Klaroid (SUN) and Klarsicht (KASH) co-localize with centromeres at the nuclear envelope and are required for proper chromosome motions and pairing. We identified Mud (NuMA in vertebrates) as co-localizing with centromeres, Klarsicht and Klaroid. Mud is also required to maintain the integrity of the nuclear envelope and for the correct assembly of the synaptonemal complex. Our findings reveal a mechanism for chromosome pairing in Drosophila, and indicate that microtubules, centrosomes and associated proteins play a crucial role in the dynamic organization of chromosomes inside the nucleus.


Asunto(s)
Núcleo Celular/metabolismo , Emparejamiento Cromosómico , Meiosis , Microtúbulos/metabolismo , Animales , Animales Modificados Genéticamente , Núcleo Celular/genética , Centrómero/genética , Centrómero/metabolismo , Centrosoma/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Femenino , Cinética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Microscopía Confocal , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ovario/citología , Ovario/metabolismo , Unión Proteica , Interferencia de ARN , Rotación , Complejo Sinaptonémico , Imagen de Lapso de Tiempo/métodos
9.
PLoS Genet ; 9(12): e1004012, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24367278

RESUMEN

Mitosis and meiosis are two distinct cell division programs. During mitosis, sister chromatids separate, whereas during the first meiotic division, homologous chromosomes pair and then segregate from each other. In most organisms, germ cells do both programs sequentially, as they first amplify through mitosis, before switching to meiosis to produce haploid gametes. Here, we show that autosomal chromosomes are unpaired at their centromeres in Drosophila germline stem cells, and become paired during the following four mitosis of the differentiating daughter cell. Surprisingly, we further demonstrate that components of the central region of the synaptonemal complex are already expressed in the mitotic region of the ovaries, localize close to centromeres, and promote de novo association of centromeres. Our results thus show that meiotic proteins and meiotic organization of centromeres, which are key features to ensure reductional segregation, are laid out in amplifying germ cells, before meiosis has started.


Asunto(s)
Centrómero/genética , Emparejamiento Cromosómico/genética , Drosophila melanogaster/genética , Meiosis/genética , Complejo Sinaptonémico/genética , Animales , Cromátides/genética , Segregación Cromosómica , Drosophila melanogaster/citología , Células Germinativas/citología , Mitosis , Intercambio de Cromátides Hermanas/genética
10.
Dev Cell ; 26(2): 195-203, 2013 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-23906067

RESUMEN

Few families of signaling factors have been implicated in the control of development. Here, we identify the neuropeptides nociceptin and somatostatin, a neurotransmitter and neuroendocrine hormone, as a class of developmental signals in both chick and zebrafish. We show that signals from the anterior mesendoderm are required for the formation of anterior placode progenitors, with one of the signals being somatostatin. Somatostatin controls ectodermal expression of nociceptin, and both peptides regulate Pax6 in lens and olfactory progenitors. Consequently, loss of somatostatin and nociceptin signaling leads to severe reduction of lens formation. Our findings not only uncover these neuropeptides as developmental signals but also identify a long-sought-after mechanism that initiates Pax6 in placode progenitors and may explain the ancient evolutionary origin of neuropeptides, predating a complex nervous system.


Asunto(s)
Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Cristalino/embriología , Bulbo Olfatorio/embriología , Mucosa Olfatoria/embriología , Péptidos Opioides/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Somatostatina/metabolismo , Células Madre/citología , Animales , Embrión de Pollo , Proteínas del Ojo/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Cristalino/citología , Cristalino/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Mucosa Olfatoria/citología , Mucosa Olfatoria/metabolismo , Péptidos Opioides/biosíntesis , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/biosíntesis , Proteínas Represoras/biosíntesis , Transducción de Señal , Células Madre/fisiología , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo , Nociceptina
11.
Dev Biol ; 345(2): 180-90, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20643116

RESUMEN

Crucial components of the vertebrate eye, ear and nose develop from discrete patches of surface epithelium, called placodes, which fold into spheroids and undergo complex morphogenesis. Little is known about how the changes in cell and tissue shapes are coordinated with the acquisition of cell fates. Here we explore whether these processes are regulated by common transcriptional mechanisms in the developing ear. After specification, inner ear precursors elongate to form the placode, which invaginates and is transformed into the complex structure of the adult ear. We show that the transcription factor Pax2 plays a key role in coordinating otic fate and placode morphogenesis, but appears to regulate each process independently. In the absence of Pax2, otic progenitors not only lose otic marker expression, but also fail to elongate due to the loss of apically localised N-cadherin and N-CAM. In the absence of either N-cadherin or N-CAM otic cells lose apical cell-cell contact and their epithelial shape. While misexpression of Pax2 leads to ectopic activation of both adhesion molecules, it is not sufficient to confer otic identity. These observations suggest that Pax2 controls cell shape independently from cell identity and thus acts as coordinator for these processes.


Asunto(s)
Oído Interno/embriología , Factor de Transcripción PAX2/fisiología , Animales , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular , Embrión de Pollo , Epitelio/embriología , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Ratones , Morfogénesis , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo
12.
Dev Biol ; 336(2): 327-36, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19781543

RESUMEN

In vertebrates, cranial placodes form crucial parts of the sensory nervous system in the head. All cranial placodes arise from a common territory, the preplacodal region, and are identified by the expression of Six1/4 and Eya1/2 genes, which control different aspects of sensory development in invertebrates as well as vertebrates. While So and Eya can induce ectopic eyes in Drosophila, the ability of their vertebrate homologues to induce placodes in non-placodal ectoderm has not been explored. Here we show that Six1 and Eya2 are involved in ectodermal patterning and cooperate to induce preplacodal gene expression, while repressing neural plate and neural crest fates. However, they are not sufficient to induce ectopic sensory placodes in future epidermis. Activation of Six1 target genes is required for expression of preplacodal genes, for normal placode morphology and for placode-specific Pax protein expression. These findings suggest that unlike in the fly where the Pax6 homologue Eyeless acts upstream of Six and Eya, the regulatory relationships between these genes are reversed in early vertebrate placode development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Animales , Embrión de Pollo , Proteínas de Homeodominio/genética , Humanos , Inmunohistoquímica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Factor de Transcripción PAX2/genética , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/fisiología
13.
Mech Dev ; 125(11-12): 947-62, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18801428

RESUMEN

In the chick embryo, two methods are now used for studying the developmental role of genes by loss-of-function approaches: vector-based shRNA and morpholino oligonucleotides. Both have the advantage that loss-of-function can be conducted in a spatially and temporally controlled way by focal electroporation. Here, we compare these two methods. We find that the shRNA expressing vectors pRFPRNAi, even when targeting a non-expressed protein like GFP, cause morphological phenotypes, mis-regulation of non-targeted genes and activation of the p53 pathway. These effects are highly reproducible, appear to be independent of the targeting sequence and are particularly severe at primitive streak and early somite stages. By contrast, morpholinos do not cause these effects. We propose that pRFPRNAi should only be used with considerable caution and that morpholinos are a preferable approach for gene knock-down during early chick development.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , Técnicas Genéticas , Proteínas Luminiscentes/química , Interferencia de ARN , Animales , Embrión de Pollo , Cartilla de ADN/química , Electroporación , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen/instrumentación , Silenciador del Gen , Genes p53 , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Oligonucleótidos/genética , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...