Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731439

RESUMEN

The production of peanut oil in the industrial sector necessitates the utilization of diverse raw materials to generate consistent batches with stable flavor profiles, thereby leading to an increased focus on understanding the correlation between raw materials and flavor characteristics. In this study, sensory evaluations, headspace solid-phase micro-extraction gas chromatography mass spectrometry (HS-SPME-GC-MS), odor activity value (OAV) calculations, and correlation analysis were employed to investigate the flavors and main contributing amino acids of hot-pressed oils derived from different peanut varieties. The results confirmed that the levels of alcohols, aldehydes, and heterocyclic compounds in peanut oil varied among nine different peanut varieties under identical processing conditions. The OAVs of 25 key aroma compounds, such as methylthiol, 3-ethyl-2,5-dimethylpyrazine, and 2,3-glutarone, exceeded a value of 1. The sensory evaluations and flavor content analysis demonstrated that pyrazines significantly influenced the flavor profile of the peanut oil. The concentrations of 11 amino acids showed a strong correlation with the levels of pyrazines. Notably, phenylalanine, lysine, glutamic acid, arginine, and isoleucine demonstrated significant associations with both pyrazine and nut flavors. These findings will provide valuable insights for enhancing the sensory attributes of peanut oil and selecting optimal raw peanuts for its production.


Asunto(s)
Aminoácidos , Arachis , Cromatografía de Gases y Espectrometría de Masas , Odorantes , Aceite de Cacahuete , Aminoácidos/análisis , Aminoácidos/química , Arachis/química , Odorantes/análisis , Aceite de Cacahuete/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Aromatizantes/química , Aromatizantes/análisis , Pirazinas/química , Pirazinas/análisis , Microextracción en Fase Sólida , Gusto , Calor
2.
J Sci Food Agric ; 104(4): 1953-1961, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37897493

RESUMEN

BACKGROUND: A new enzymatic hydrolysis-based process inspired by the Maillard reaction can produce strong flavored, high-value rapeseed oil that meets safety requirements. In the present study, the effect of reaction time (10-30 min) and temperature (130-160 °C) on the physicochemical properties, nutritional status, fatty acids composition and key aroma compounds of fragrant rapeseed oil (FRO) was investigated. RESULTS: An increasing reaction time and temperature substantially decreased the total tocopherol, polyphenol and sterol contents of FRO, but increased benzo[a]pyrene content, as well as the acid and peroxide values, which did not exceed the European Union legislation limit. Among the volatile components, 2,5-dimethyl was the main substance contributing to the barbecue flavor of FRO. The 150 °C for 30 min reaction conditions produced a FRO with a strong, fragrant flavor, with high total tocopherol (560.15 mg kg-1 ), polyphenol (6.82 mg kg-1 ) and sterol (790.65 mg kg-1 ) contents; acceptable acid (1.60 mg g-1 ) and peroxide values (4.78 mg g-1 ); and low benzo[a]pyrene (1.39 mg g-1 ) content. These were the optimal conditions for the enzymatic Maillard reaction, according to the principal component analysis. Furthermore, hierarchical cluster analysis showed that reaction temperature had a stronger effect on FRO than reaction time. CONCLUSION: The optimal enzymatic Maillard reaction conditions for the production of FRO are heating at 150 °C for 30 min. These findings provide new foundations for better understanding the composition and flavor profile of FRO, toward guiding its industrial production. © 2023 Society of Chemical Industry.


Asunto(s)
Reacción de Maillard , Compuestos Orgánicos Volátiles , Aceite de Brassica napus/química , Ácidos Grasos , Odorantes/análisis , Estado Nutricional , Benzo(a)pireno , Compuestos Orgánicos Volátiles/química , Polifenoles/análisis , Peróxidos , Esteroles , Tocoferoles
3.
Food Chem X ; 20: 100880, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144744

RESUMEN

Key aroma components of 33 fragrant peanut oils with different aroma types were screened by combined using flavoromics and machine learning. A total of 108 volatile compounds were identified and 100 kinds of them were accurately quantified, and 38 compounds out of them were with odorant activity value ≥1. The 33 peanut oils presented varied intensity of 'fresh peanuts', 'roasted nut', 'burnt', 'over-burnt', 'sweet', 'peanut butter-like', 'puffed food' and 'exotic flavor', and could be classified into four aroma types, namely raw, light, thick and salty. Partial least squares regression analysis, random forest and classification regression tree revealed that 2-acetyl pyrazine had a negative effect on 'fresh peanuts' and could distinguish raw flavor samples well; 2-methylbutanal and 4-vinylguaiacol were key compounds of 'roasted nut' and had significant differences (P < 0.0001) in thick and raw flavor samples; furfural contributed to the 'puffed food' as well as key compound of salty flavor.

4.
Bioresour Technol ; 389: 129850, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37813314

RESUMEN

Low (15 °C) and high (35 °C) temperatures significantly increased DHA as a percentage of total fatty acids (TFAs) to 43.6 % and 40.46 %, respectively (1.28- and 1.18-fold of that at 25 °C, respectively). The incompleteness of the FAS pathway indicates that DHA synthesis does not occur via this pathway. Meanwhile, Comparative transcriptome analysis showed that the PUFA synthase pathway might be responsible for DHA synthesis in C. sp. SUN. Additionally, the three diacylglycerol acyltransferases all had a substrate preference for saturated fatty acid (SFA)-CoA, which also contributed to the decreased SFA and increased DHA at both low and high temperatures. Additionally, WGCNA analysis identifies key regulatory genes that may be involved in temperature-regulated DHA proportion. The findings of this study indicate the mechanisms of temperature-regulated DHA accumulation in C. sp. SUN and shed light on the manipulation of DHA proportion by changes in temperature.


Asunto(s)
Ácidos Docosahexaenoicos , Ácidos Grasos , Ácidos Grasos/metabolismo , Diacilglicerol O-Acetiltransferasa , Temperatura , Diglicéridos , Ácidos Grasos Insaturados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA