Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 674: 972-981, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38964001

RESUMEN

Piezo-photocatalysis combines photocatalysis and piezoelectric effects to enhance catalytic efficiency by creating an internal electric field in the photocatalyst, improving carrier separation and overall performance. This study presents a high-performance piezo-photocatalyst for efficient dye degradation using a synergistic barium titanate (BTO)-MXene composite. The composite was synthesized via a facile method, combining the unique properties of BTO nanoparticles with the high conductivity of MXene. The structural and morphological analysis confirmed the successful formation of the composite, with well-dispersed BTO nanoparticles on the MXene surface. The piezo-photocatalytic activity of the composite was evaluated using a typical dye solution (Rhodamine B: RhB) under ultraviolet irradiation and mechanical agitation. The results revealed a remarkable enhancement in dye degradation (90 % in 15 min for piezo-photocatalysis) compared to individual stimuli (58.2 % for photocatalysis and 95.8 % in 90 min for piezocatalysis), highlighting the synergistic effects between BTO and MXene. The enhanced catalytic performance was attributed to the efficient charge separation and transfer facilitated by the composite's structure, leading to increased reactive species generation and dye molecule degradation. Furthermore, the composite exhibited excellent stability and reusability, showcasing its potential for practical applications in wastewater treatment. Overall, this work represents a promising strategy for designing high-performance synergistic catalysts, addressing the pressing need for sustainable solutions in environmental remediation.

2.
ACS Nano ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018431

RESUMEN

Defects around the surface and grain boundaries of perovskite films normally cause severe nonradiative recombination and imbalanced charge carrier transport, further limiting both the efficiency and stability of perovskite solar cells (PSCs). To tackle this critical issue, we propose a chemical bridge strategy to reconstruct the interface using organometallic molecules. The commercially available molecule bis(diphenylphosphino)ferrocene (FcP2), with a unique bridge molecular structure, anchors and chelates Pb atoms by forming strong Pb-P bonds and further passivates both surfaces and grain boundaries. Detailed characterization revealed that bridge molecule FcP2 reconstruction can effectively suppress nonradiative recombination, and the electron delocalization properties of the ferrocene core can further achieve more balanced interfacial carrier transport. The resultant N-i-P PSC device outputs close to 25% efficiency together with one of the best reported operational stabilities, maintaining over 95% of the initial efficiency after 1000 h of continuous operation at the maximum power point under 1-sun illumination.

3.
Molecules ; 29(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38998925

RESUMEN

To alleviate the problems of environmental pollution and energy crisis, aggressive development of clean and alternative energy technologies, in particular, water splitting, metal-air batteries, and fuel cells involving two key half reactions comprising hydrogen evolution reaction (HER) and oxygen reduction (ORR), is crucial. In this work, an innovative hybrid comprising heterogeneous Cu/Co bimetallic nanoparticles homogeneously dispersed on a nitrogen-doped carbon layer (Cu/Co/NC) was constructed as a bifunctional electrocatalyst toward HER and ORR via a hydrothermal reaction along with post-solid-phase sintering technique. Thanks to the interfacial coupling and electronic synergism between the Cu and Co bimetallic nanoparticles, the Cu/Co/NC catalyst showed improved catalytic ORR activity with a half-wave potential of 0.865 V and an excellent stability of more than 30 h, even compared to 20 wt% Pt/C. The Cu/Co/NC catalyst also exhibited excellent HER catalytic performance with an overpotential of below 149 mV at 10 mA/cm2 and long-term operation for over 30 h.

4.
Adv Mater ; : e2403791, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780429

RESUMEN

Self-powered wearable devices with integrated energy supply module and sensitive sensors have significantly blossomed for continuous monitoring of human activity and the surrounding environment in healthcare sectors. The emerging of MXene-based materials has brought research upsurge in the fields of energy and electronics, owing to their excellent electrochemical performance, large surface area, superior mechanical performance, and tunable interfacial properties, where their performance can be further boosted via multi-interface engineering. Herein, a comprehensive review of recent progress in MXenes for self-powered wearable devices is discussed from the aspects of multi-interface engineering. The fundamental properties of MXenes including electronic, mechanical, optical, and thermal characteristics are discussed in detail. Different from previous review works on MXenes, multi-interface engineering of MXenes from termination regulation to surface modification and their impact on the performance of materials and energy storage/conversion devices are summarized. Based on the interfacial manipulation strategies, potential applications of MXene-based self-powered wearable devices are outlined. Finally, proposals and perspectives are provided on the current challenges and future directions in MXene-based self-powered wearable devices.

5.
ChemSusChem ; : e202400796, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697941

RESUMEN

Piezocatalysis-induced dye degradation has garnered significant attention as an effective method for addressing wastewater treatment challenges. In our study, we employed a room-temperature sonochemical method to synthesize piezoelectric barium titanate nanoparticles (BaTiO3: BTO) with varying levels of Li doping. This approach not only streamlined the sample preparation process but also significantly reduced the overall time required for synthesis, making it a highly efficient and practical method. One of the key findings was the exceptional performance of the Li-doped BTO nanoparticles. With 20 mg of Li additive, we achieved 90 % removal of Rhodamine B (RhB) dye within a relatively short timeframe of 150 minutes, all while subjecting the sample to ultrasonic vibration. This rapid and efficient dye degradation was further evidenced by the calculated kinetic rate constant, which indicated seven times faster degradation rate compared to pure BTO. The enhanced piezoelectric performance observed in the Li-doped BTO nanoparticles can be attributed to the strategic substitution of Li atoms, which facilitated a more efficient transfer of charge charges at the interface. Overall, our study underscores the potential of piezocatalysis coupled with advanced materials like Li-doped BTO nanoparticles as a viable and promising solution for wastewater treatment, offering both efficiency and environmental sustainability.

6.
ACS Appl Mater Interfaces ; 16(20): 26167-26181, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728216

RESUMEN

Ni-rich layered ternary cathodes are promising candidates thanks to their low toxic Co-content and high energy density (∼800 Wh/kg). However, a critical challenge in developing Ni-rich cathodes is to improve cyclic stability, especially under high voltage (>4.3 V), which directly affects the performance and lifespan of the battery. In this study, niobium-doped strontium titanate (Nb-STO) is successfully synthesized via a facile solvothermal method and used as a surface modification layer onto the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode. The results exhibited that the Nb-STO modification significantly improved the cycling stability of the cathode material even under high-voltage (4.5 V) operational conditions. In particular, the best sample in our work could provide a high discharge capacity of ∼190 mAh/g after 100 cycles under 1 C with capacity retention over 84% in the voltage range of 3.0-4.5 V, superior to the pristine NCM811 (∼61%) and pure STO modified STO-811-600 (∼76%) samples under the same conditions. The improved electrochemical performance and stability of NCM811 under high voltage should be attributed to not only preventing the dissolution of the transition metals, further reducing the electrolyte's degradation by the end of charge, but also alleviating the internal resistance growth from uncontrollable cathode-electrolyte interface (CEI) evolution. These findings suggest that the as-synthesized STO with an optimized Nb-doping ratio could be a promising candidate for stabilizing Ni-rich cathode materials to facilitate the widespread commercialization of Ni-rich cathodes in modern LIBs.

7.
Adv Mater ; 36(23): e2313090, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38385793

RESUMEN

In the last decade, interfacial solar steam generation (ISSG), powered by natural sunlight garnered significant attention due to its great potential for low-cost and environmentally friendly clean water production in alignment with the global decarbonization efforts. This review aims to share the knowledge and engage with a broader readership about the current progress of ISSG technology and the facing challenges to promote further advancements toward practical applications. The first part of this review assesses the current strategies for enhancing the energy efficiency of ISSG systems, including optimizing light absorption, reducing energy losses, harvesting additional energy, and lowering evaporation enthalpy. Subsequently, the current challenges faced by ISSG technologies, notably salt accumulation and bio-fouling issues in practical applications, are elucidated and contemporary methods are discussed to overcome these challenges. In the end, potential applications of ISSG, ranging from initial seawater desalination and industrial wastewater purification to power generation, sterilization, soil remediation, and innovative concept of solar sea farm, are introduced, highlighting the promising potential of ISSG technology in contributing to sustainable and environmentally conscious practices. Based on the review and in-depth understanding of these aspects, the future research focuses are proposed to address potential issues in both fundamental research and practical applications.

8.
Adv Mater ; 36(19): e2312797, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38288643

RESUMEN

The integration of graphene and metal-organic frameworks (MOFs) has numerous implications across various domains, but fabricating such assemblies is often complicated and time-consuming. Herein, a one-step preparation of graphene-MOF assembly is presented by directly impregnating vertical graphene (VG) arrays into the zeolitic imidazolate framework (ZIF) precursors under ambient conditions. This approach can effectively assemble multiple ZIFs, including ZIF-7, ZIF-8, and ZIF-67, resulting in their uniform dispersion on the VG with adjustable sizes and shapes. Hydrogen defects on the VG surface are critical in inducing such high-efficiency ZIF assembly, acting as the reactive sites to interact with the ZIF precursors and facilitate their crystallisation. The versatility of VG-ZIF-67 assembly is further demonstrated by exploring the process of MOF amorphization. Surprisingly, this process leads to an amorphous thin-film coating formed on VG (named VG-IL-amZIF-67), which preserves the short-range molecular bonds of crystalline ZIF-67 while sacrificing the long-range order. Such a unique film-on-graphene architecture maintains the essential characteristics and functionalities of ZIF-67 within a disordered arrangement, making it well-suited for electrocatalysis. In electrochemical oxygen reduction, VG-IL-amZIF-67 exhibits exceptional activity, selectivity, and stability to produce H2O2 in acid media.

9.
Small Methods ; 8(2): e2300417, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37330645

RESUMEN

Gas sensors are of great interest to portable and miniaturized sensing technologies with applications ranging from air quality monitoring to explosive detection and medical diagnostics, but the existing chemiresistive NO2 sensors still suffer from issues such as poor sensitivity, high operating temperature, and slow recovery. Herein, a high-performance NO2 sensors based on all-inorganic perovskite nanocrystals (PNCs) is reported, achieving room temperature operation with ultra-fast response and recovery time. After tailoring the halide composition, superior sensitivity of ≈67 at 8 ppm NO2 is obtained in CsPbI2 Br PNC sensors with a detection level down to 2 ppb, which outperforms other nanomaterial-based NO2 sensors. Furthermore, the remarkable optoelectronic properties of such PNCs enable dual-mode operation, i.e., chemiresistive and chemioptical sensing, presenting a new and versatile platform for advancing high-performance, point-of-care NO2 detection technologies.

10.
Small ; 20(8): e2304693, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37822153

RESUMEN

Tumor penetration of nanoparticles is crucial in nanomedicine, but the mechanisms of tumor penetration are poorly understood. This work presents a multidimensional, quantitative approach to investigate the tissue penetration behavior of nanoparticles, with focuses on the particle size effect on penetration pathways, in an MDA-MB-231 tumor spheroid model using a combination of spectrometry, microscopy, and synchrotron beamline techniques. Quasi-spherical gold nanoparticles of different sizes are synthesized and incubated with 2D and 3D MDA-MB-231 cells and spheroids with or without an energy-dependent cell uptake inhibitor. The distribution and penetration pathways of nanoparticles in spheroids are visualized and quantified by inductively coupled plasma mass spectrometry, two-photon microscopy, and synchrotron X-ray fluorescence microscopy. The results reveal that 15 nm nanoparticles penetrate spheroids mainly through an energy-independent transcellular pathway, while 60 nm nanoparticles penetrate primarily through an energy-dependent transcellular pathway. Meanwhile, 22 nm nanoparticles penetrate through both transcellular and paracellular pathways and they demonstrate the greatest penetration ability in comparison to other two sizes. The multidimensional analytical methodology developed through this work offers a generalizable approach to quantitatively study the tissue penetration of nanoparticles, and the results provide important insights into the designs of nanoparticles with high accumulation at a target site.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Humanos , Oro/química , Esferoides Celulares , Nanopartículas/química , Microscopía
11.
Adv Sci (Weinh) ; 11(9): e2305558, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38115755

RESUMEN

2D nanomaterials play a critical role in realizing high-performance flexible electrodes for wearable energy storge devices, owing to their merits of large surface area, high conductivity and high strength. The electrode is a complex system and the performance is determined by multiple and interrelated factors including the intrinsic properties of materials and the structures at different scales from macroscale to atomic scale. Multiscale design strategies have been developed to engineer the structures to exploit full potential and mitigate drawbacks of 2D materials. Analyzing the design strategies and understanding the working mechanisms are essential to facilitate the integration and harvest the synergistic effects. This review summarizes the multiscale design strategies from macroscale down to micro/nano-scale structures and atomic-scale structures for developing 2D nanomaterials-based flexible electrodes. It starts with brief introduction of 2D nanomaterials, followed by analysis of structural design strategies at different scales focusing on the elucidation of structure-property relationship, and ends with the presentation of challenges and future prospects. This review highlights the importance of integrating multiscale design strategies. Finding from this review may deepen the understanding of electrode performance and provide valuable guidelines for designing 2D nanomaterials-based flexible electrodes.

12.
ACS Nano ; 17(20): 20621-20633, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37791899

RESUMEN

Nickel-rich LiNi0.8Co0.15Al0.015O2 (NCA) with excellent energy density is considered one of the most promising cathodes for lithium-ion batteries. Nevertheless, the stress concentration caused by Li+/Ni2+ mixing and oxygen vacancies leads to the structural collapse and obvious capacity degradation of NCA. Herein, a facile codoping of anion (F-)-cation (Mg2+) strategy is proposed to address these problems. Benefiting from the synergistic effect of F- and Mg2+, the codoped material exhibits alleviated Li+/Ni2+ mixing and demonstrates enhanced electrochemical performance at high voltage (≥4.5 V), outperformed the pristine and F-/Mg2+ single-doped counterparts. Combined experimental and theoretical studies reveal that Mg2+ and F- codoping decreases the Li+ diffusion energy barrier and enhances the Li+ transport kinetics. In particular, the codoping synergistically suppresses the Li+/Ni2+ mixing and lattice oxygen escape, and alleviates the stress-strain accumulation, thereby inhibiting crack propagation and improving the electrochemical performance of the NCA. As a consequence, the designed Li0.99Mg0.01Ni0.8Co0.15Al0.05O0.98F0.02 (Mg1+F2) demonstrates a much higher capacity retention of 82.65% than NCA (55.69%) even after 200 cycles at 2.8-4.5 V under 1 C. Furthermore, the capacity retention rate of the Mg1+F2||graphite pouch cell after 500 cycles is 89.6% compared to that of the NCA (only 79.4%).

13.
J Colloid Interface Sci ; 652(Pt B): 1184-1196, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657218

RESUMEN

Ni-rich layered structure ternary oxides, such as LiNi0.8Co0.1Mn0.1O2 (NCM811), are promising cathode materials for high-energy lithium-ion batteries (LIBs). However, a trade-off between high capacity and long cycle life still obstructs the commercialization of Ni-rich cathodes in modern LIBs. Herein, a facile dual modification approach for improving the electrochemical performance of NCM811 was enabled by a typical perovskite oxide: strontium titanate (SrTiO3). With a suitable thermal treatment, the modified cathode exhibited an outstanding electrochemical performance that could deliver a high discharge capacity of 188.5 mAh/g after 200 cycles under 1C with a capacity retention of 90%. The SrTiO3 (STO) protective layer can effectively suppress the side reaction between the NCM811 and the electrolyte. In the meantime, the pillar effect provided by interfacial Ti doping could effectively reduce the Li+/Ni2+ mixing ratio on the NCM811 surface and offer more efficient Li+ migration between the cathode and the coating layer after post-thermal treatment (≥600 °C). This dual modification strategy not only significantly improves the structural stability of Ni-rich layered structure but also enhances the electrochemical kinetics via increasing diffusion rate of Li+. The electrochemical measurement results further disclosed that the 3 wt% STO coated NCM811 with 600 °C annealing exhibits the best performance compared with other control samples, suggesting an appropriate temperature range for STO coated NCM811 cathode is critical for maintaining a stable structure for the whole system. This work may offer an effective option to enhance the electrochemical performance of Ni-rich cathodes for high-performance LIBs.

14.
ACS Appl Mater Interfaces ; 15(37): 43745-43755, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37695646

RESUMEN

TiNb2O7 has attracted extensive attention from lithium-ion battery researchers due to its superior specific capacity and safety. However, its poor ion conductivity and electron conductivity hinder its further development. To improve the ion/electron transport of TiNb2O7, we report that chlorine doping and oxygen vacancy engineering regulate the energy band and crystal structure simultaneously through a simple solid-phase method. NH4Cl was used to realize Cl- doping and oxygen vacancy production. A Rietveld refinement demonstrates an effective substitution of Cl in the O sites of Nb-O octahedra, with an enlarged crystal plane spacing. The oxygen vacancies provide more active sites for lithium intercalation. The diffusion coefficient of Li+ is inceased from 2.39 × 10-14 to 1.50 × 10-13 cm2 s-1, which reveals the positive influence of Cl- doping and oxygen vacancies on the promoted Li+ transport behavior. Charge compensation is introduced by the doping of Cl- and the generation of oxygen vacancies, leading to the formation of Ti3+ and Nb4+ and the adjustment of the electronic structure. DFT calculations reveal that TiNb2O7 with Cl- doping and an O vacancy shows a metallic property with a finite value at the Fermi level, which is conducive to electron transfer in the electrode material. Benefiting from these advantages, the modified TiNb2O7 presents superior rate performance with a commendable capacity of 172.82 mAh g-1 at 50 C. This work provides guidance to design high-performance anode materials for high-rate lithium-ion batteries.

15.
Small ; : e2304572, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37528703

RESUMEN

Recently, there has been a surge of interest in nanogenerators within the scientific community because their immense potential for extracting energy from the surrounding environment. A promising approach involves utilizing ambient moisture as an energy source for portable devices. In this study, moisture-enabled nanogenerators (MENGs) are devised by integrating heterojunctions of graphene oxide (GO) and reduced graphene oxide (rGO). Benefiting from the unique structure, a larger ion concentration gradient is achieved as well as a lower resistance, which leads to enhanced electricity generation. The resulting MENG generates a desirable open-circuit voltage of 0.76 V and a short-circuit current density of 73 µA cm-2 with a maximum power density of 15.8 µW cm-2 . Notably, the designed device exhibits a high voltage retention of more than 90% after 3000 bending cycles, suggesting a high potential for flexible applications. Moreover, a large-scale integrated MENG array is developed by incorporating flexible printed circuit technology and connecting it to a power management system. This integrated system can provide ample energy to operate an electronic ink display and drive a heart rate sensor for health monitoring. The outcomes of this research present a novel framework for advancing next-generation self-powered flexible devices, thereby demonstrating significant promise for future wearable electronics.

16.
ACS Nano ; 17(17): 17070-17081, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37590207

RESUMEN

Metallic nanoarchitectures hold immense value as functional materials across diverse applications. However, major challenges lie in effectively engineering their hierarchical porosity while achieving scalable fabrication at low processing temperatures. Here we present a liquid-metal solvent-based method for the nanoarchitecting and transformation of solid metals. This was achieved by reacting liquid gallium with solid metals to form crystalline entities. Nanoporous features were then created by selectively removing the less noble and comparatively softer gallium from the intermetallic crystals. By controlling the crystal growth and dealloying conditions, we realized the effective tuning of the micro-/nanoscale porosities. Proof-of-concept examples were shown by applying liquid gallium to solid copper, silver, gold, palladium, and platinum, while the strategy can be extended to a wider range of metals. This metallic-solvent-based route enables low-temperature fabrication of metallic nanoarchitectures with tailored porosity. By demonstrating large-surface-area and scalable hierarchical nanoporous metals, our work addresses the pressing demand for these materials in various sectors.

17.
Nanoscale Adv ; 5(16): 4015-4017, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37560421

RESUMEN

Guest editors Zhaojun Han, Ruopian Fang, Dewei Chu, Da-Wei Wang and Kostya (Ken) Ostrikov, introduce this Nanoscale Advances themed issue on supercapacitors.

18.
ACS Appl Mater Interfaces ; 15(24): 29308-29320, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37279402

RESUMEN

Ni-rich layered ternary cathodes (i.e., LiNixCoyMzO2, M = Mn or Al, x + y + z = 1 and x ≥ 0.8) are promising candidates for the power supply of portable electronic devices and electric vehicles. However, the relatively high content of Ni4+ in the charged state shortens their lifespan due to inevitable capacity and voltage deteriorations during cycling. Therefore, the dilemma between high output energy and long cycle life needs to be addressed to facilitate more widespread commercialization of Ni-rich cathodes in modern lithium-ion batteries (LIBs). This work presents a facile surface modification approach with defect-rich strontium titanate (SrTiO3-x) coating on a typical Ni-rich cathode: LiNi0.8Co0.15Al0.05O2 (NCA). The defect-rich SrTiO3-x-modified NCA exhibits enhanced electrochemical performance compared to its pristine counterpart. In particular, the optimized sample delivers a high discharge capacity of ∼170 mA h/g after 200 cycles under 1C with capacity retention over 81.1%. The postmortem analysis provides new insight into the improved electrochemical properties which are ascribed to the SrTiO3-x coating layer. This layer appears to not only alleviate the internal resistance growth, from uncontrollable cathode-electrolyte interface evolution, but also acts as a lithium diffusion channel during prolonged cycling. Therefore, this work offers a feasible strategy to improve the electrochemical performance of layered cathodes with high nickel content for next-generation LIBs.

19.
Nano Lett ; 23(11): 5027-5034, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37249308

RESUMEN

Tuning the electroactive surface species of electrocatalysts remains a significant challenge for achieving highly efficient oxygen evolution reactions. Herein, we propose an innovative in situ leaching strategy, modulated by cationic oxidation, to achieve active self-reconstruction of these catalysts. Vanadium is introduced as a cation into Ni3S2 and oxidized under low oxidative potential, leading to subsequent leaching into the electrolyte and triggering self-reconstruction. The structural evolution from V-Ni3S2 to Ni(OH)2 and subsequently to NiOOH is identified by operando Raman as a three-step transition. In contrast, V-free Ni3S2 is unable to bypass the thermodynamically predicted nickel oxysulfide products to transform into active NiOOH. As a result, the self-restructured V-Ni3S2 only needs an ultralow overpotential of 155 mV at 10 mA cm-2, outperforming V-free Ni3S2 and many other advanced catalysts. This work provides new guidelines for manipulating in situ leaching to modulate the self-reconstruction of catalysts.

20.
Adv Mater ; 35(30): e2301506, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37116867

RESUMEN

Bottom-up electrochemical synthesis of atomically thin materials is desirable yet challenging, especially for non-van der Waals (non-vdW) materials. Thicknesses below a few nanometers have not been reported yet, posing the question how thin can non-vdW materials be electrochemically synthesized. This is important as materials with (sub-)unit-cell thickness often show remarkably different properties compared to their bulk form or thin films of several nanometers thickness. Here, a straightforward electrochemical method utilizing the angstrom-confinement of laminar reduced graphene oxide (rGO) nanochannels is introduced to obtain a centimeter-scale network of atomically thin (<4.3 Å) 2D-transition metal oxides (2D-TMO). The angstrom-confinement provides a thickness limitation, forcing sub-unit-cell growth of 2D-TMO with oxygen and metal vacancies. It is showcased that Cr2 O3 , a material without significant catalytic activity for the oxygen evolution reaction (OER) in bulk form, can be activated as a high-performing catalyst if synthesized in the 2D sub-unit-cell form. This method displays the high activity of sub-unit-cell form while retaining the stability of bulk form, promising to yield unexplored fundamental science and applications. It is shown that while retaining the advantages of bottom-up electrochemical synthesis, like simplicity, high yield, and mild conditions, the thickness of TMO can be limited to sub-unit-cell dimensions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...