Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; : 107765, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276936

RESUMEN

Loss of terminal differentiation is a hallmark of cancer and offers a potential mechanism for differentiation therapy. Polycomb Repressive Complex 2 (PRC2) serves as the methyltransferase for K27 of histone H3 that is crucial in development. While PRC2 inhibitors show promise in treating various cancers, the underlying mechanisms remain incompletely understood. Here, we demonstrated that the inhibition or depletion of PRC2 enhanced adipocyte differentiation in malignant rhabdoid tumors (MRTs) and mesenchymal stem cells (MSCs), through upregulation of PPARG and CEBPA. Mechanistically, PRC2 directly represses their transcription through H3K27 methylation, as both genes exhibit a bivalent state in MSCs. Knockout of PPARG compromised C/EBPα expression and impeded the PRC2 inhibitor-induced differentiation into adipocytes. Furthermore, the combination of the PPARγ agonist rosiglitazone and the PRC2 inhibitor MAK683 exhibited a higher inhibition on Ki67 positivity in tumor xenograft compared to MAK683 alone. High CEBPA, PLIN1 and FABP4 levels positively correlated with favorable prognosis in sarcoma patients in TCGA cohort. Together, these findings unveil an epigenetic regulatory mechanism for PPARG and highlight the essential role of PPARγ and C/EBPα in the adipocyte differentiation of MRTs and sarcomas with a potential clinical implication.

4.
Adv Sci (Weinh) ; 11(12): e2306499, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38229201

RESUMEN

EZH2 is the catalytic subunit of the histone methyltransferase Polycomb Repressive Complex 2 (PRC2), and its somatic activating mutations drive lymphoma, particularly the germinal center B-cell type. Although PRC2 inhibitors, such as tazemetostat, have demonstrated anti-lymphoma activity in patients, the clinical efficacy is not limited to EZH2-mutant lymphoma. In this study, Activin A Receptor Type 1 (ACVR1), a type I Bone Morphogenetic Protein (BMP) receptor, is identified as critical for the anti-lymphoma efficacy of PRC2 inhibitors through a whole-genome CRISPR screen. BMP6, BMP7, and ACVR1 are repressed by PRC2-mediated H3K27me3, and PRC2 inhibition upregulates their expression and signaling in cell and patient-derived xenograft models. Through BMP-ACVR1 signaling, PRC2 inhibitors robustly induced cell cycle arrest and B cell lineage differentiation in vivo. Remarkably, blocking ACVR1 signaling using an inhibitor or genetic depletion significantly compromised the in vitro and in vivo efficacy of PRC2 inhibitors. Furthermore, high levels of BMP6 and BMP7, along with ACVR1, are associated with longer survival in lymphoma patients, underscoring the clinical relevance of this study. Altogether, BMP-ACVR1 exhibits anti-lymphoma function and represents a critical PRC2-repressed pathway contributing to the efficacy of PRC2 inhibitors.


Asunto(s)
Linfoma de Células B , Linfoma , Humanos , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Transducción de Señal/fisiología , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo
5.
Inquiry ; 60: 469580231160888, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37021396

RESUMEN

To clarify the functional orientation of community health nurses in the continuous care of patients with chronic diseases and to encourage community nurses to play their expected roles in extended nursing work. In this study, conducted from May to July 2020, the staff of Shanghai Community Health Service Center were sampled, and representative medical staff were selected for in-depth interviews and focus group discussions. Eighteen community medical staff members participated. The functions of community nurses in the continuous care of patients with chronic diseases are mainly as follows: ① undertaking individualized projects for patients' continuous treatment, nursing and rehabilitation; ② creating "peer education" conditions for patients; ③ providing supportive care to family caregivers; and ④ participating in the whole process of family doctor team health management. The results provide a reminder for nurse managers that under the new mission, community nurses need "one specialty and multiple abilities," appropriate nursing technology and good health management skills. The training of community nurses should better meet the practical needs of patients with chronic diseases.


Asunto(s)
Enfermeras y Enfermeros , Humanos , China , Investigación Cualitativa , Continuidad de la Atención al Paciente , Enfermedad Crónica
6.
J Biol Chem ; 299(4): 103073, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36858198

RESUMEN

Polycomb repressive complex 2 (PRC2) suppresses gene transcription by methylating lysine 27 of histone H3 (H3K27) and plays critical roles in embryonic development. Among the core PRC2 subunits, EZH2 is the catalytic subunit and EED allosterically activates EZH2 upon binding trimethylated H3K27 (H3K27me3). Activating mutations on Y641, A677, and A687 within the enzymatic SET (Su(Var)3 to 9, Enhancer-of-zeste, and Trithorax) domain of EZH2 have been associated with enhanced H3K27me3 and tumorigenicity of many cancers including B-cell lymphoma and melanoma. To tackle the critical residues outside the EZH2 SET domain, we examined EZH2 mutations in lymphoma from cancer genome databases and identified a novel gain-of-function mutation W113C, which increases H3K27me3 in vitro and in vivo and promotes CDKN2A silencing to a similar level as EZH2 Y641F. Different from other gain-of-function mutations, this mutation is located in the SET-activation loop at the EZH2 N terminus, which stabilizes the SET domain and facilitates substrate binding. This may explain how the W113C mutation increases PRC2 activity. Tazemetostat is a Food and Drug Administration-approved EZH2-binding inhibitor for follicular lymphoma treatment. Intriguingly, the W113C mutation leads to tazemetostat resistance in both H3K27 methylation and tumor proliferation. Another class of allosteric PRC2 inhibitor binding EED overcomes the resistance, effectively decreases H3K27me3, and blocks tumor proliferation in cells expressing EZH2 W113C. As this mutation is originally identified from lymphoma samples, our results demonstrated its activating characteristic and the deleterious consequence, provide insights on PRC2 regulation, and support the continued exploration of treatment optimization for lymphoma patients.


Asunto(s)
Resistencia a Antineoplásicos , Mutación con Ganancia de Función , Linfoma de Células B , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histonas/metabolismo , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/genética , Mutación , Complejo Represivo Polycomb 2/genética
7.
Cell Death Dis ; 13(2): 155, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35169119

RESUMEN

The methyltransferase Polycomb Repressive Complex 2 (PRC2), composed of EZH2, SUZ12, and EED subunits, is associated with transcriptional repression via tri-methylation of histone H3 on lysine 27 residue (H3K27me3). PRC2 is a valid drug target, as the EZH2 gain-of-function mutations identified in patient samples drive tumorigenesis. PRC2 inhibitors have been discovered and demonstrated anti-cancer efficacy in clinic. However, their pharmacological mechanisms are poorly understood. MAK683 is a potent EED inhibitor in clinical development. Focusing on MAK683-sensitive tumors with SMARCB1 or ARID1A loss, we identified a group of PRC2 target genes with high H3K27me3 signal through epigenomic and transcriptomic analysis. Multiple senescence-associated secretory phenotype (SASP) genes, such as GATA4, MMP2/10, ITGA2 and GBP1, are in this group besides previously identified CDKN2A/p16. Upon PRC2 inhibition, the de-repression of SASP genes is detected in multiple sensitive models and contributes to decreased Ki67+, extracellular matrix (ECM) reorganization, senescence associated inflammation and tumor regression even in CDKN2A/p16 knockout tumor. And the combination of PRC2 inhibitor and CDK4/6 inhibitor leads to better effect. The genes potential regulated by PRC2 in neuroblastoma samples exhibited significant enrichment of ECM and senescence associated inflammation, supporting the clinical relevance of our results. Altogether, our results unravel the pharmacological mechanism of PRC2 inhibitors and propose a combination strategy for MAK683 and other PRC2 drugs.


Asunto(s)
Neoplasias , Complejo Represivo Polycomb 2 , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histonas/química , Humanos , Inflamación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Fenotipo Secretor Asociado a la Senescencia
8.
Front Cell Dev Biol ; 9: 757747, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869346

RESUMEN

miR-92a-3p (microRNA-92a-3p) has been reported to be dysregulated in several cancers, and as such, it is considered to be a cancer-related microRNA. However, the influence of miR-92a-3p on biological behaviors in cervical cancer (CC) still remains unclear. Quantitative real-time PCR was used to detect miR-92a-3p levels in CC stem cells. Here, Cell Counting Kit-8 (CCK8) assay, Transwell cell invasion assay and flow cytometry assay were used to characterize the effects that miR-92a-3p and large tumor suppressor l (LATS1) had on proliferation, invasion and cell cycle transition. The luciferase reporter gene assay was used to verify the targeting relationship between miR-92a-3p and LATS1. Western Blotting was used to investigate the related signaling pathways and proteins. Data from The Cancer Genome Atlas (TCGA) showed that miR-92a-3p was upregulated in CC tissues and closely associated with overall survival. miR-92a-3p promoted proliferation, invasion and cell cycle transition in CC stem cells. The luciferase reporter assay showed that miR-92a-3p bound to the 3'-untranslated region (3'-UTR) of the LATS1 promoter. LATS1 inhibited proliferation, invasion and cell cycle transition. Results measured by Western Blotting showed that LATS1 downregulated expressions of transcriptional co-activator with PDZ-binding motif (TAZ), vimentin and cyclin E, but upregulated the expression of E-cadherin. Re-expression of LATS1 partly reversed the effects of miR-92a-3p on proliferation, invasion and cell cycle transition, as well as on TAZ, E-cadherin, vimentin, and cyclin E. miR-92a-3p promoted the malignant behavior of CC stem cells by targeting LATS1, which regulated TAZ and E-cadherin.

9.
Biomater Sci ; 8(22): 6350-6361, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33025982

RESUMEN

Drug-resistant bacterial infections have stolen the spotlight in recent years as stubborn diseases intimidating public health, thus urgently requiring the development of innovative treatment strategies with high antibacterial efficiency and low bacterial resistance. Here, a polymeric antimicrobial with synergistic chemo-photodynamic therapy function is fabricated to combat drug-resistant bacterial infections. In this strategy, polymeric micelles based on amphiphilic poly(aspartic acid)-block-poly(ε-caprolactone) (PAsp-b-PCL) are used as nanocarriers to encapsulate a photosensitizer protoporphyrin IX (PpIX) in the micellar core, which then undergo silver nanoparticle decoration on the micellar shell through an in situ reduction method. Compared with mono-therapy, the combination of silver nanoparticle decoration and light-activatable PpIX enables the resulting polymeric antimicrobial to exert chemo-photodynamic activity to kill drug-resistant bacteria more potently in vitro. Furthermore, the prepared polymeric antimicrobials with synergistic antibacterial activity show robust eradication efficacy against subcutaneous infections induced by drug-resistant Staphylococcus aureus in a murine model. Therefore, our study provides a simple and potent strategy to realize combination therapy for eradicating drug-resistant bacterial infections.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Fotoquimioterapia , Animales , Ratones , Micelas , Plata
10.
Front Chem ; 8: 500, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850613

RESUMEN

The utilization of nanotechnology to deliver vaccines and modulate immunity has shown great potential in cancer therapy. Peptide-based supramolecular hydrogels as novel vaccine adjuvants have been found to effectively improve the immune response and tumor curative effect. In this study, we designed a set of reduction-responsive self-assembled peptide precursors (Fbp-GDFDFDYD(E, S, or K)-ss-ERGD), which can be reduced by glutathione (GSH) into Fbp-GDFDFDYD(E, S or K)-SH for forming of hydrogel with different surface properties (E-gel, S-gel, and K-gel, respectively). Using the same method, co-assembled hydrogel vaccines (E-vac, S-vac, and K-vac, respectively) can also be prepared by mixing different precursors with antigens before GSH reduction. Through TEM observation of the nanostructure, we found that all the co-assembled hydrogels, especially K-vac, possessed much denser and more unified nanofiber networks as compared with antigen-free hydrogels, which were very suitable for antigen storage and vaccine delivery. Although the three peptides adopted similar ß-sheet secondary structures, the mechanical properties of their resulted co-assembled hydrogel vaccines were obviously different. Compared to E-vac, S-vac had a much weaker mechanical property, while K-vac had a much higher. In vivo experiments, co-assembled hydrogel vaccines, especially K-vac, also promoted antibody production and anti-tumor immune responses more significantly than the other two vaccines. Our results demonstrated that co-assembled hydrogels formed by peptides and antigens co-assembly could act as effective vaccine delivery systems for boosting antibody production, and different immune effects can be acquired by tuning the surface properties of the involved self-assembling peptides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...