Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 72: 103147, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593632

RESUMEN

Adaptive response to physiological oxygen levels (physO2; 5% O2) enables embryonic survival in a low-oxygen developmental environment. However, the mechanism underlying the role of physO2 in supporting preimplantation development, remains elusive. Here, we systematically studied oxygen responses of hallmark events in preimplantation development. Focusing on impeded transcriptional upregulation under atmospheric oxygen levels (atmosO2; 20% O2) during the 2-cell stage, we functionally identified a novel role of HIF-1α in promoting major zygotic genome activation by serving as an oxygen-sensitive transcription factor. Moreover, during blastocyst formation, atmosO2 impeded H3K4me3 and H3K27me3 deposition by deregulating histone-lysine methyltransferases, thus impairing X-chromosome inactivation in blastocysts. In addition, we found atmosO2 impedes metabolic shift to glycolysis before blastocyst formation, thus resulting a low-level histone lactylation deposition. Notably, we also reported an increased sex-dimorphic oxygen response of embryos upon preimplantation development. Together, focusing on genetic and epigenetic events that are essential for embryonic survival and development, the present study advances current knowledge of embryonic adaptive responses to physO2, and provides novel insight into mechanism underlying irreversibly impaired developmental potential due to a short-term atmosO2 exposure.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia , Oxígeno , Transcriptoma , Cigoto , Animales , Oxígeno/metabolismo , Desarrollo Embrionario/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Cigoto/metabolismo , Femenino , Histonas/metabolismo , Blastocisto/metabolismo , Masculino
2.
FASEB J ; 38(3): e23453, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38318639

RESUMEN

During early development, both genome-wide epigenetic reprogramming and metabolic remodeling are hallmark changes of normal embryogenesis. However, little is known about their relationship and developmental functions during the preimplantation window, which is essential for the acquisition of totipotency and pluripotency. Herein, we reported that glutathione (GSH), a ubiquitous intracellular protective antioxidant that maintains mitochondrial function and redox homeostasis, plays a critical role in safeguarding postfertilization DNA demethylation and is essential for establishing developmental potential in preimplantation embryos. By profiling mitochondria-related transcriptome that coupled with different pluripotency, we found GSH is a potential marker that is tightly correlated with full pluripotency, and its beneficial effect on prompting developmental potential was functionally conformed using in vitro fertilized mouse and bovine embryos as the model. Mechanistic study based on preimplantation embryos and embryonic stem cells further revealed that GSH prompts the acquisition of totipotency and pluripotency by facilitating ten-eleven-translocation (TET)-dependent DNA demethylation, and ascorbic acid (AsA)-GSH cycle is implicated in the process. In addition, we also reported that GSH serves as an oviductal paracrine factor that supports development potential of preimplantation embryos. Thus, our results not only advance the current knowledge of functional links between epigenetic reprogramming and metabolic remodeling during preimplantation development but also provided a promising approach for improving current in vitro culture system for assisted reproductive technology.


Asunto(s)
Desmetilación del ADN , Metilación de ADN , Animales , Bovinos , Ratones , Blastocisto/metabolismo , Células Madre Embrionarias/metabolismo , Glutatión/metabolismo , Desarrollo Embrionario/genética
3.
Genes (Basel) ; 14(10)2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37895234

RESUMEN

In vitro embryo production depends on high-quality oocytes. Compared with in vivo matured oocytes, in vitro oocytes undergo precocious meiotic resumption, thus compromising oocyte quality. C-type natriuretic peptide (CNP) is a follicular factor maintaining meiotic arrest. Thus, CNP-pretreatment has been widely used to improve the in vitro maturation (IVM) of oocytes in many species. However, the efficacy of this strategy has remained unsatisfactory in porcine oocytes. Here, by determining the functional concentration and dynamics of CNP in inhibiting spontaneous meiotic resumption, we improved the current IVM system of porcine oocytes. Our results indicate that although the beneficial effect of the CNP pre-IVM strategy is common among species, the detailed method may be largely divergent among them and needs to be redesigned specifically for each one. Focusing on the overlooked role of cumulus cells surrounding the oocytes, we also explore the mechanisms relevant to their beneficial effect. In addition to oocytes per se, the enhanced anti-apoptotic and anti-oxidative gene expression in cumulus cells may contribute considerably to improved oocyte quality. These findings not only emphasize the importance of screening the technical parameters of the CNP pre-IVM strategy for specific species, but also highlight the critical supporting role of cumulus cells in this promising strategy.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Péptido Natriurético Tipo-C , Animales , Porcinos , Péptido Natriurético Tipo-C/farmacología , Péptido Natriurético Tipo-C/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Meiosis , Oocitos/metabolismo , Estrés Oxidativo , Apoptosis
4.
Genes (Basel) ; 14(4)2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37107647

RESUMEN

Mammalian preimplantation development depends on the interaction between embryonic autocrine and maternal paracrine signaling. Despite the robust independence of preimplantation embryos, oviductal factors are thought to be critical to pregnancy success. However, how oviductal factors regulate embryonic development and the underlying mechanism remain unknown. In the present study, focusing on WNT signaling, which has been reported to be essential for developmental reprogramming after fertilization, we analyzed the receptor-ligand repertoire of preimplantation embryonic WNT signaling, and identified that the WNT co-receptor LRP6 is necessary for early cleavage and has a prolonged effect on preimplantation development. LRP6 inhibition significantly impeded zygotic genome activation and disrupted relevant epigenetic reprogramming. Focusing on the potential oviductal WNT ligands, we found WNT2 as the candidate interacting with embryonic LRP6. More importantly, we found that WNT2 supplementation in culture medium significantly promoted zygotic genome activation (ZGA) and improved blastocyst formation and quality following in vitro fertilization (IVF). In addition, WNT2 supplementation significantly improved implantation rate and pregnancy outcomes following embryo transfer. Collectively, our findings not only provide novel insight into how maternal factors regulate preimplantation development through maternal-embryonic communication, but they also propose a promising strategy for improving current IVF systems.


Asunto(s)
Desarrollo Embrionario , Cigoto , Embarazo , Humanos , Animales , Femenino , Ligandos , Desarrollo Embrionario/genética , Implantación del Embrión , Oviductos , Mamíferos , Proteína wnt2/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética
5.
J Biol Chem ; 298(1): 101456, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861240

RESUMEN

Well-orchestrated maternal-fetal cross talk occurs via secreted ligands, interacting receptors, and coupled intracellular pathways between the conceptus and endometrium and is essential for successful embryo implantation. However, previous studies mostly focus on either the conceptus or the endometrium in isolation. The lack of integrated analysis impedes our understanding of early maternal-fetal cross talk. Herein, focusing on ligand-receptor complexes and coupled pathways at the maternal-fetal interface in sheep, we provide the first comprehensive proteomic map of ligand-receptor pathway cascades essential for embryo implantation. We demonstrate that these cascades are associated with cell adhesion and invasion, redox homeostasis, and the immune response. Candidate interactions and their physiological roles were further validated by functional experiments. We reveal the physical interaction of albumin and claudin 4 and their roles in facilitating embryo attachment to endometrium. We also demonstrate a novel function of enhanced conceptus glycolysis in remodeling uterine receptivity by inducing endometrial histone lactylation, a newly identified histone modification. Results from in vitro and in vivo models supported the essential role of lactate in inducing endometrial H3K18 lactylation and in regulating redox homeostasis and apoptotic balance to ensure successful implantation. By reconstructing a map of potential ligand-receptor pathway cascades at the maternal-fetal interface, our study presents new concepts for understanding molecular and cellular mechanisms that fine-tune conceptus-endometrium cross talk during implantation. This provides more direct and accurate insights for developing potential clinical intervention strategies to improve pregnancy outcomes following both natural and assisted conception.


Asunto(s)
Histonas , Útero , Animales , Implantación del Embrión/fisiología , Endometrio/metabolismo , Femenino , Histonas/metabolismo , Ligandos , Embarazo , Proteómica , Ovinos , Útero/metabolismo
6.
Front Cell Dev Biol ; 9: 784244, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869387

RESUMEN

During preimplantation development, a wave of genome-wide DNA demethylation occurs to acquire a hypomethylated genome of the blastocyst. As an essential epigenomic event, postfertilization DNA demethylation is critical to establish full developmental potential. Despite its importance, this process is prone to be disrupted due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF), and thus leading to epigenetic errors. However, since the first case of aberrant DNA demethylation reported in IVF embryos, its underlying mechanism remains unclear and the strategy for correcting this error remains unavailable in the past decade. Thus, understanding the mechanism responsible for DNA demethylation defects, may provide a potential approach for preventing or correcting IVF-associated complications. Herein, using mouse and bovine IVF embryos as the model, we reported that ten-eleven translocation (TET)-mediated active DNA demethylation, an important contributor to the postfertilization epigenome reprogramming, was impaired throughout preimplantation development. Focusing on modulation of TET dioxygenases, we found vitamin C and α-ketoglutarate, the well-established important co-factors for stimulating TET enzymatic activity, were synthesized in both embryos and the oviduct during preimplantation development. Accordingly, impaired active DNA demethylation can be corrected by incubation of IVF embryos with vitamin C, and thus improving their lineage differentiation and developmental potential. Together, our data not only provides a promising approach for preventing or correcting IVF-associated epigenetic errors, but also highlights the critical role of small molecules or metabolites from maternal paracrine in finetuning embryonic epigenomic reprogramming during early development.

7.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34031239

RESUMEN

C-natriuretic peptide (CNP) and its receptor guanylyl cyclase, natriuretic peptide receptor 2 (NPR2), are key regulators of cyclic guanosine monophosphate (cGMP) homeostasis. The CNP-NPR2-cGMP signaling cascade plays an important role in the progression of oocyte meiosis, which is essential for fertility in female mammals. In preovulatory ovarian follicles, the luteinizing hormone (LH)-induced decrease in CNP and its encoding messenger RNA (mRNA) natriuretic peptide precursor C (Nppc) are a prerequisite for oocyte meiotic resumption. However, it has never been determined how LH decreases CNP/Nppc In the present study, we identified that tristetraprolin (TTP), also known as zinc finger protein 36 (ZFP36), a ubiquitously expressed mRNA-destabilizing protein, is the critical mechanism that underlies the LH-induced decrease in Nppc mRNA. Zfp36 mRNA was transiently up-regulated in mural granulosa cells (MGCs) in response to the LH surge. Loss- and gain-of-function analyses indicated that TTP is required for Nppc mRNA degradation in preovulatory MGCs by targeting the rare noncanonical AU-rich element harbored in the Nppc 3' UTR. Moreover, MGC-specific knockout of Zfp36, as well as lentivirus-mediated knockdown in vivo, impaired the LH/hCG-induced Nppc mRNA decline and oocyte meiotic resumption. Furthermore, we found that LH/hCG activates Zfp36/TTP expression through the EGFR-ERK1/2-dependent pathway. Our findings reveal a functional role of TTP-induced mRNA degradation, a global posttranscriptional regulation mechanism, in orchestrating the progression of oocyte meiosis. We also provided a mechanism for understanding CNP-dependent cGMP homeostasis in diverse cellular processes.


Asunto(s)
Meiosis , Péptido Natriurético Tipo-C/biosíntesis , Folículo Ovárico/metabolismo , Ovulación , Estabilidad del ARN , ARN Mensajero/metabolismo , Tristetraprolina/metabolismo , Animales , Femenino , Ratones , Ratones Endogámicos ICR , Péptido Natriurético Tipo-C/genética , ARN Mensajero/genética , Tristetraprolina/genética
8.
Int J Biochem Cell Biol ; 97: 118-127, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29474925

RESUMEN

Milk lipids, important for infant growth and development, are produced and secreted by mammary gland under the regulation of steroid hormones, growth factors, and microRNAs (miRNAs). miR-221 has been identified in milk and adipocytes and it plays important roles in regulating normal mammary epithelial hierarchy and breast cancer stem cells; however, its roles in lipid metabolism in mammary epithelial cells (MECs), the cells of lipid synthesis and secretion, are as yet unknown. Through overexpression or inhibition of miR-221 expression, we found that it regulated lipid metabolism in MECs and was expressed differentially at various stages during murine mammary gland development. Inhibition of miR-221 expression increased lipid content in MECs through elevation of the lipid synthesis enzyme FASN, while overexpression of miR-221 reduced MEC lipid content. Moreover, the steroid hormones estradiol and progesterone decreased miR-221 expression with a subsequent increase in lipid formation in MECs. The expression of miR-221 was lower during lactation, which suggests that it may be involved in milk production. Therefore, miR-221 might be a useful target for influencing milk lipid production.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Metabolismo de los Lípidos/fisiología , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Humanas/metabolismo , MicroARNs/biosíntesis , Animales , Línea Celular Tumoral , Estradiol/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Lactancia/efectos de los fármacos , Lactancia/fisiología , Metabolismo de los Lípidos/efectos de los fármacos , Glándulas Mamarias Animales/citología , Glándulas Mamarias Humanas/citología , Ratones , MicroARNs/genética , Progesterona/farmacología
9.
Am J Physiol Cell Physiol ; 314(1): C43-C52, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28835435

RESUMEN

Mammary epithelial cells are regulated by steroid hormones, growth factors, and even microRNAs. miR-15b has been found to regulate lipid metabolism in adipocytes; however, its effects on lipid metabolism in mammary epithelial cells, the cells of lipid synthesis and secretion, are as yet unknown. The main purpose of this investigation was to explore the effect of miR-15b on lipid metabolism in mammary epithelial cells, along with the underlying mechanisms. miR-15b was overexpressed or inhibited by miRNA mimics or inhibitors; subsequently, lipid formation in mammary epithelial cells, and proteins related to lipid metabolism, were investigated. Through overexpression or inhibition of miR-15b expression, the current investigation found that miR-15b downregulates lipid metabolism in mammary epithelial cells and is expressed differentially at various stages of mouse and goat mammary gland development. Inhibition of miR-15b expression increased lipid content in mammary epithelial cells through elevation of the lipid synthesis enzyme fatty acid synthetase (FASN), and overexpression of miR-15b reduced lipid content in mammary epithelial cells with decreasing levels of FASN. Moreover, the steroid hormones estradiol and progesterone decreased miR-15b expression with a subsequent increase in lipid formation in mammary epithelial cells. The expression of miR-15b was lower during lactation and negatively correlated with lipid synthesis proteins, which suggests that it may be involved in lipid synthesis and milk production. miR-15b might be a useful target for altering lipid production and milk yield.


Asunto(s)
Células Epiteliales/metabolismo , Lactancia , Lipogénesis , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Humanas/metabolismo , MicroARNs/metabolismo , Animales , Línea Celular , Proliferación Celular , Células Epiteliales/efectos de los fármacos , Estradiol/farmacología , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Cabras , Humanos , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/efectos de los fármacos , Ratones , MicroARNs/genética , Leche Humana/metabolismo , Progesterona/farmacología , Regulación hacia Arriba
10.
Oncotarget ; 8(58): 98014-98028, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29228670

RESUMEN

The main function of the mammary gland is to secret milk for newborn growth. Milk production process is regulated by hormones, growth factors, noncoding RNAs and other factors locally. Long non-coding RNAs (lncRNAs), one type of recently discovered non-coding RNA, have been found in mammary gland and some studies suggested lncRNA may play important roles in mammary gland development. Competing endogenous RNAs (ceRNAs) are emerging to compete for miRNA binding and, in turn, regulate each other. In the current study, we sequenced mRNA, miRNA and lncRNA in goat mammary tissue at 2 points in lactation (early and mature). All data were co-expressed together from the same samples. Our data showed that the ceRNAs up-regulated during the mature lactation phase were associated with lipid, protein, carbon and amino acid synthesis and metabolism. This correlates with the function of the mature lactation phase: i.e. the continuous production of large amounts of milk, rich in proteins, lipids, amino acids and other nutrients. Alternately, the ceRNAs up-regulated during early lactation were associated with PI3K-AKT pathways and ECM-receptor interactions; these fulfil the functional role of preparing the mammary gland for full lactation. Therefore, the results suggest that ceRNAs work synergistically during different developmental stages to regulate specific functions associated with lactation control. This study suggests that ceRNAs (lncRNA-mRNA) may be involved in lactation process.

11.
Front Microbiol ; 8: 992, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28626453

RESUMEN

Zinc oxide nanoparticles (ZnO NPs) are used widely in consumer and industrial products, however, their influence on gut microbiota and metabolism and their mutual interactions are not fully understood. In this study, the effects of ZnO NPs on ileal bacterial communities, plasma metabolites, and correlations between them were investigated. Hens were fed with different concentrations of ZnO NPs [based on Zn; 0 mg/kg (control), 25 mg/kg, 50 mg/kg, and 100 mg/kg] for 9 weeks. Subsequently, ileal digesta and blood plasma were collected for analysis of microflora and metabolites, respectively. The V3-V4 region of the 16S rRNA gene of ileal digesta microbiota was sequenced using the Illumina HiSeq 2500 platform. The predominant bacterial community in the ileum belongs to the phylum Firmicutes. The richness of the bacterial community was negatively correlated with increasing amounts of ZnO NPs (r = -0.636, P < 0.01); when ZnO NP levels were at 100 mg/kg, microbiota diversity was significantly decreased (P < 0.05). The community structure determined by LEfSe analysis indicated that Bacilli, Fusobacteria, and Proteobacteria were changed, and Lactobacillus was reduced by ZnO NPs. Moreover, metabolism as analyzed by nuclear magnetic resonance (NMR) indicated that glucose, some amino acids, and other metabolites were changed by ZnO NPs. Choline, lactate, and methionine were positively correlated with bacterial richness. In summary, ZnO NPs could influence the levels of microflora in ileal digesta, particularly Lactobacillus. Furthermore, the richness of the microbiota was related to changes in choline, lactate, and methionine metabolism.

12.
Mol Cell Endocrinol ; 454: 77-86, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28599789

RESUMEN

Lipids are a major component of milk and are important for infant growth and development. MicroRNA-126 (miR-126) has previously been observed in mammary glands and adipocytes and is known to be involved in lipid metabolism during the process of atherosclerosis. However, it remains unknown whether miR-126 also participates in lipid metabolism in mammary luminal epithelial cells (MECs). In the current investigation, miR-126-3p inhibition stimulated lipid synthesis in MECs in part through increasing levels of the lipid synthesis enzymes FASN, ACSL1, and Insig1. Overexpression of miR-126-3p decreased lipid content in MECs with a reduction in FASN and Insig1. Furthermore, the expression of miR-126-3p was diminished by the steroid hormones estradiol and progesterone with a subsequent elevation of lipid formation in MECs. We also noted that miR-126-3p was expressed differentially at various stages of murine mammary gland development, exhibiting a negative correlation with FASN. Together these findings suggest that miR-126-3 might be involved in lipid metabolism in mammary gland.


Asunto(s)
Células Epiteliales/metabolismo , Metabolismo de los Lípidos/genética , Glándulas Mamarias Animales/citología , MicroARNs/metabolismo , Animales , Proliferación Celular/genética , Estradiol/metabolismo , Acido Graso Sintasa Tipo I/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Glándulas Mamarias Animales/crecimiento & desarrollo , MicroARNs/genética , Progesterona/metabolismo
13.
Oncotarget ; 8(26): 42673-42692, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28487501

RESUMEN

The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use.


Asunto(s)
Histonas/metabolismo , FN-kappa B/metabolismo , Nanopartículas/administración & dosificación , Oocitos/efectos de los fármacos , Óxido de Zinc/farmacología , Desarrollo Embrionario , Femenino , Humanos , Transducción de Señal
14.
Theriogenology ; 89: 280-288, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28043364

RESUMEN

Cysteamine has been used for treating cystinosis for many years, and furthermore it has also been used as a therapeutic agent for different diseases including Huntington's disease, Parkinson's disease (PD), nonalcoholic fatty liver disease, malaria, cancer, and others. Although cysteamine has many potential applications, its use may also be problematic. The effects of low doses of cysteamine on the reproductive system, especially the mammary glands are currently unknown. In the current investigation, low dose (10 mg/kg BW/day) of cysteamine did not affect sheep body weight gain or organ index of the liver, spleen, or heart; it did, however, increase the levels of blood lymphocytes, monocytes, and platelets. Most interestingly, it inhibited mammary gland development after 2 or 5 months of treatment by reducing the organ index and the number of mammary gland ducts. Plasma growth hormone and estradiol remained unchanged; however, plasma progesterone levels and the protein level of HSD3ß1 in sheep ovaries were decreased by cysteamine. In addition to steroid hormones, growth factors produced in the mammary glands also play crucial roles in mammary gland development. Results showed that protein levels of HGF, GHR, and IGF1R were decreased after 5 months of cysteamine treatment. These findings together suggest that progesterone and local growth factors in mammary glands might be involved in cysteamine initiated inhibition of pubertal ovine mammary gland development. Furthermore, it may lead to a reduction in fertility. Therefore, cysteamine should be used with great caution until its actions have been further investigated and its limitations overcome.


Asunto(s)
Cisteamina/farmacología , Péptidos y Proteínas de Señalización Intercelular/sangre , Glándulas Mamarias Animales/efectos de los fármacos , Progesterona/sangre , Ovinos/fisiología , Animales , Peso Corporal , Ensayo de Inmunoadsorción Enzimática , Estradiol/sangre , Femenino , Glándulas Mamarias Animales/crecimiento & desarrollo , Maduración Sexual , Ovinos/crecimiento & desarrollo
15.
Toxicol Appl Pharmacol ; 313: 149-158, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27815134

RESUMEN

Although it is well known that cysteamine is a potent chemical for treating many diseases including cystinosis and it has many adverse effects, the effect of cysteamine on spermatogenesis is as yet unknown. Therefore the objective of this investigation was to explore the effects of cysteamine on spermatogenesis and the underlying mechanisms. Sheep were treated with vehicle control, 10mg/kg or 20mg/kg cysteamine for six months. After that, the semen samples were collected to determine the spermatozoa motility by computer-assisted sperm assay method. Blood samples were collected to detect the levels of hormones and the activity of enzymes. Spermatozoa and testis samples were collected to study the mechanism of cysteamine's actions. It was found that the effects of cysteamine on spermatogenesis were dose dependent. A low dose (10mg/kg) cysteamine treatment increased ovine spermatozoa motility; however, a higher dose (20mg/kg) decreased both spermatozoa concentration and motility. This decrease might be due to a reduction in steroid hormone production by the testis, a reduction in energy in the testis and spermatozoa, a disruption in the blood-testis barrier, or a breakdown in the vital signaling pathways involved in spermatogenesis. The inhibitory effects of cysteamine on sheep spermatogenesis may be used to model its effects on young male patients with cystinosis or other diseases that are treated with this drug. Further studies on spermatogenesis that focus on patients treated with cysteamine during the peripubertal stage are warranted.


Asunto(s)
Cisteamina/farmacología , Metabolismo Energético , Espermatogénesis/efectos de los fármacos , Animales , Apoptosis , Aspartato Aminotransferasas/sangre , Peso Corporal/efectos de los fármacos , Estrógenos/sangre , Masculino , Oxidación-Reducción , Proteínas/metabolismo , Ovinos , Espermatozoides/efectos de los fármacos , Testículo/metabolismo , Testosterona/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA