Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
3.
Cell Death Discov ; 10(1): 205, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693106

RESUMEN

Depression is highly prevalent globally, however, currently available medications face challenges such as low response rates and short duration of efficacy. Additionally, depression mostly accompany other psychiatric disorders, further progressing to major depressive disorder without long-term effective management. Thus, sustained antidepressant strategies are urgently needed. Recently, ketamine and psilocybin gained attention as potential sustained antidepressants. Review of recent studies highlights that synaptic plasticity changes as key events of downstream long-lasting changes in sustained antidepressant effect. This underscores the significance of synaptic plasticity in sustained antidepressant effect. Moreover, neurexins, key molecules involved in the regulation of synaptic plasticity, act as critical links between synaptic plasticity and sustained antidepressant effects, involving mechanisms including protein level, selective splicing, epigenetics, astrocytes, positional redistribution and protein structure. Based on the regulation of synaptic plasticity by neurexins, several drugs with potential for sustained antidepressant effect are also discussed. Focusing on neurexins in regulating synaptic plasticity promises much for further understanding underlying mechanisms of sustained antidepressant and the next step in new drug development. This research represents a highly promising future research direction.

4.
Pharmacol Biochem Behav ; 239: 173757, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574898

RESUMEN

Depression is a major chronic mental illness worldwide, characterized by anhedonia and pessimism. Exposed to the same stressful stimuli, some people behave normally, while others exhibit negative behaviors and psychology. The exact molecular mechanisms linking stress-induced depressive susceptibility and resilience remain unclear. Connexin 43 (Cx43) forms gap junction channels between the astrocytes, acting as a crucial role in the pathogenesis of depression. Cx43 dysfunction could lead to depressive behaviors, and depression down-regulates the expression of Cx43 in the prefrontal cortex (PFC). Besides, accumulating evidence indicates that inflammation is one of the most common pathological features of the central nervous system dysfunction. However, the roles of Cx43 and peripheral inflammation in stress-susceptible and stress-resilient individuals have rarely been investigated. Thus, animals were classified into the chronic unpredictable stress (CUS)-susceptible group and the CUS-resilient group based on the performance of behavioral tests following the CUS protocol in this study. The protein expression of Cx43 in the PFC, the Cx43 functional changes in the PFC, and the expression levels including interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, IL-2, IL-10, and IL-18 in the peripheral serum were detected. Here, we found that stress exposure triggered a significant reduction in Cx43 protein expression in the CUS-susceptible mice but not in the CUS-resilient mice accompanied by various Cx43 phosphorylation expression and the changes of inflammatory signals. Stress resilience is associated with Cx43 in the PFC and fluctuation in inflammatory signaling, showing that therapeutic targeting of these pathways might promote stress resilience.


Asunto(s)
Conexina 43 , Inflamación , Corteza Prefrontal , Estrés Psicológico , Animales , Corteza Prefrontal/metabolismo , Conexina 43/metabolismo , Ratones , Estrés Psicológico/metabolismo , Masculino , Inflamación/metabolismo , Resiliencia Psicológica , Ratones Endogámicos C57BL , Depresión/metabolismo , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Conducta Animal
7.
Brain Res Bull ; 209: 110921, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447659

RESUMEN

Tunneling nanotubes (TNTs) have emerged as pivotal structures for intercellular communication, enabling the transfer of cellular components across distant cells. Their involvement in neurological disorders has attracted considerable scientific interest. This review delineates the functions of TNTs within the central nervous system, examining their role in the transmission of bioenergetic substrates, and signaling molecules, and their multifaceted impact on both physiological and pathological processes, with an emphasis on neurodegenerative diseases. The review highlights the selectivity and specificity of TNTs as dedicated pathways for intercellular cargo delivery, particularly under stress conditions that provoke increased TNT formation. The potential of TNTs as therapeutic targets is explored in depth. We pay particular attention to the interactions between astrocytes and neurons mediated by TNTs, which are fundamental to brain architecture and function. Dysfunctions in these interactions are implicated in the spread of protein aggregates and mitochondrial anomalies, contributing to the pathogenesis of neurodegenerative diseases. The review culminates with a synthesis of the current understanding of TNT biology and identifies research gaps, advocating for intensified exploration into TNTs as a promising therapeutic frontier.


Asunto(s)
Astrocitos , Estructuras de la Membrana Celular , Nanotubos , Enfermedades Neurodegenerativas , Humanos , Comunicación Celular/fisiología , Encéfalo , Neuronas , Comunicación
8.
Zhongguo Zhong Yao Za Zhi ; 49(1): 55-61, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403338

RESUMEN

The theory of kidney storing essence storage, an important part of the basic theory of traditional Chinese medicine(TCM), comes from the Chapter 9 Discussion on Six-Plus-Six System and the Manifestations of the Viscera in the Plain Questions, which says that "the kidney manages closure and is the root of storage and the house of Jing(Essence)". According to this theory, essence is the fundamental substance of human life activities and it is closely related to the growth and development of the human body. Alzheimer's disease(AD) is one of the common neurodegenerative diseases, with the main pathological features of Aß deposition and Tau phosphorylation, which activate neurotoxic reactions and eventually lead to neuronal dysfunction and cell death, severely impairing the patient's cognitive and memory functions. Although research results have been achieved in the TCM treatment of AD, the complex pathogenesis of AD makes it difficult to develop the drugs capable of curing AD. The stem cell therapy is an important method to promote self-repair and regeneration, and bone marrow mesenchymal stem cells(BMSCs) as adult stem cells have the ability of multi-directional differentiation. By reviewing the relevant literature, this paper discusses the association between BMSCs and the TCM theory of kidney storing essence, and expounds the material basis of this theory from the perspective of molecular biology. Studies have shown that TCM with the effect of tonifying the kidney in the treatment of AD are associated with BMSCs. Exosomes produced by such cells are one of the main substances affecting AD. Exosomes containing nucleic acids, proteins, and lipids can participate in intercellular communication, regulate cell function, and affect AD by reducing Aß deposition, inhibiting Tau protein phosphorylation and neuroinflammation, and promoting neuronal regeneration. Therefore, discussing the prevention and treatment of exosomes and AD based on the theory of kidney storing essence will provide a new research idea for the TCM treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Exosomas , Adulto , Humanos , Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/tratamiento farmacológico , Exosomas/metabolismo , Exosomas/patología , Riñón/patología , Medicina Tradicional China , Neuronas
9.
Mini Rev Med Chem ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38213172

RESUMEN

Ginsenoside is the principal active ingredient in ginseng. Several investigations have found that ginsenosides have anti-inflammatory, antioxidant, anti-apoptotic, anti-cancer, and antiallergic activities. Ferroptosis is an iron-dependent, non-apoptotic form of cell-regulated death caused by lipid peroxidation. Iron, lipid, and amino acid metabolism orchestrate the complex ferroptosis response through direct or indirect regulation of iron accumulation or lipid peroxidation. More and more research has demonstrated that ginsenoside impacts illnesses via ferroptosis, implying that ferroptosis might be employed as a novel target of ginsenoside for disease therapy. This article examines the molecular mechanism of ferroptosis as well as the current advancement of ginsenoside in influencing disorders via ferroptosis.

10.
Brain Res Bull ; 207: 110871, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211740

RESUMEN

CONTEXT: Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, has been shown to exhibit anti-depressive effects in clinical trials. However, the direct mechanism underlying its effect on neuroinflammation remains unclear. Neuroinflammatory reaction from astrocytes leads to depression, and our previous study found that gap junction disorder between astrocytes aggravated neuroinflammatory reaction in depressed mice. OBJECTIVE: To investigate the potential mechanism of celecoxib's effects on astrocytic gap junctions during the central nervous inflammation-induced depression. MATERIALS & METHODS: Stereotaxic injection of lipopolysaccharide (LPS) into the prefrontal cortex (PFC) to establish a model of major depressive disorder (MDD). Celecoxib was administrated into PFC 15 min after LPS injection. The depressive performance was tested by tail suspension test and forced swimming test, and the levels of proinflammation cytokines were determined at mRNA and protein levels. Resting-state functional connection (rsFC) was employed to assess changes in the default mode network (DMN). Additionally, astrocytic gap junctions were also determined by lucifer yellow (LY) diffusion and transmission electron microscope (TEM), and the expression of connexin 43 (Cx43) was measured by western blotting, quantitative polymerase chain reaction, and immunofluorescence. RESULTS: LPS injection induced significant depressive performance, which was ameliorated by celecoxib treatment. Celecoxib also improved rsFC in the DMN. Furthermore, celecoxib improved astrocytic gap junctions as evidenced by increased LY diffusion, shortened gap junction width, and normalized levels of phosphorylated Cx43. Celecoxib also blocked the phosphorylation of p65, and inhibition of p65 abolished the improvement of Cx43. DISCUSSION & CONCLUSION: Anti-depressive effects of celecoxib are mediated, at least in part, by the inhibition of nuclear factor- kappa B (NF-κB) and the subsequent improvement of astrocytic gap junction function.


Asunto(s)
Trastorno Depresivo Mayor , FN-kappa B , Animales , Ratones , Celecoxib/farmacología , FN-kappa B/metabolismo , Conexina 43/metabolismo , Astrocitos/metabolismo , Trastorno Depresivo Mayor/metabolismo , Lipopolisacáridos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Uniones Comunicantes
11.
Autophagy ; 20(3): 590-613, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37908119

RESUMEN

Although microglial activation is induced by an increase in chemokines, the role of mitophagy in this process remains unclear. This study aimed to elucidate the role of microglial mitophagy in CKLF/CKLF1 (chemokine-like factor 1)-induced microglial activation and neuroinflammation, as well as the underlying molecular mechanisms following CKLF treatment. This study determined that CKLF, an inducible chemokine in the brain, leads to an increase in mitophagy markers, such as DNM1L, PINK1 (PTEN induced putative kinase 1), PRKN, and OPTN, along with a simultaneous increase in autophagosome formation, as evidenced by elevated levels of BECN1 and MAP1LC3B (microtubule-associated protein 1 light chain 3 beta)-II. However, SQSTM1, a substrate of autophagy, was also accumulated by CKLF treatment, suggesting that mitophagy flux was reduced and mitophagosomes accumulated. These findings were confirmed by transmission electron microscopy and confocal microscopy. The defective mitophagy observed in our study was caused by impaired lysosomal function, including mitophagosome-lysosome fusion, lysosome generation, and acidification, resulting in the accumulation of damaged mitochondria in microglial cells. Further analysis revealed that pharmacological blocking or gene-silencing of mitophagy inhibited CKLF-mediated microglial activation, as evidenced by the expression of the microglial marker AIF1 (allograft inflammatory factor 1) and the mRNA of proinflammatory cytokines (Tnf and Il6). Ultimately, defective mitophagy induced by CKLF results in microglial activation, as observed in the brains of adult mice. In summary, CKLF induces defective mitophagy, microglial activation, and inflammation, providing a potential approach for treating neuroinflammatory diseases.Abbreviation: 3-MA: 3-methyladenine; AIF1: allograft inflammatory factor 1; ANOVA: analysis of variance; BAF: bafilomycin A1; BSA: bovine serum albumin; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; CKLF/CKLF1: chemokine-like factor 1; CNS: central nervous system; DMEM: Dulbecco's Modified Eagle Medium; DNM1L: dynamin 1 like; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescence protein; IRF3: interferon regulatory factor 3; IgG: immunoglobulin G; LAMP1: lysosomal-associated membrane protein 1; LAPTM4A: lysosomal-associated protein transmembrane 4A; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; Mdivi-1: mitochondrial division inhibitor 1; mRFP: monomeric red fluorescent protein; mtDNA: mitochondrial DNA; MTORC1: mechanistic target of rapamycin kinase complex 1; OPTN: optineurin; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PINK1: PTEN induced putative kinase 1; PLL: poly-L-lysine; PRKN: parkin RBR E3 ubiquitin protein ligase; qPCR: quantitative polymerase chain reaction; ROS: reactive oxygen species; SQSTM1: sequestosome 1; TBK1: TANK-binding kinase 1; TFEB: transcription factor EB; VDAC: voltage-dependent anion channel.


Asunto(s)
Enfermedades Mitocondriales , Mitofagia , Ratones , Animales , Mitofagia/genética , Autofagia , Proteína Sequestosoma-1/metabolismo , Microglía/metabolismo , ADN Mitocondrial/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Quimiocinas/metabolismo
12.
Phytomedicine ; 123: 155238, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128394

RESUMEN

BACKGROUND: Ischemic stroke, a severe and life-threatening neurodegenerative condition, currently relies on thrombolytic therapy with limited therapeutic window and potential risks of hemorrhagic transformation. Thus, there is a crucial need to explore novel therapeutic agents for ischemic stroke. Ginsenoside Rg1 (Rg1), a potential neuroprotective agent, exhibits anti-ischemic effects attributed to its anti-inflammatory, anti-oxidant, and anti-apoptotic properties. Nevertheless, the precise underlying mechanism of action remains to be fully elucidated. PURPOSE: This study aimed to explore whether Rg1 exerts anti-ischemic stroke effects by inhibiting pyroptotic neuronal cell death through modulation of the chemokine like factor 1 (CKLF1)/ C-C chemokine receptor type 5 (CCR5) axis. METHODS: In this study, the MCAO model was used as an ischemic stroke model, and experimental tests were performed after 6 hours of ischemia. The anti-ischemic effect of Rg1 was examined by TTC staining, nissl-staining and neurobehavioral tests. In the in vitro experiments, PC12 cells were subjected to stimulation with CKLF1's mimetic peptide C27 to assess the potential of CKLF1 to induce focal neuronal cell death. Additionally, the impact of CKLF1 mimetic peptide C27, antagonistic peptide C19, and CCR5 inhibitor MVC on PC12 cells subjected to oxygen-glucose deprivation (OGD) and subsequently treated with Rg1 was investigated. In vivo, Rg1 treatment was examined by quantitative real-time PCR (qPCR), ELISA, immunohistochemistry (IHC), immunofluorescence (IF), western blot (WB), and co-immunoprecipitate (Co-IP) assays to perspective whether Rg1 treatment reduces CKLF1/CCR5 axis-induced pyroptotic neuronal cell death. In addition, to further explore the biological significance of CKLF1 in ischemic stroke, CKLF1-/- rats were used as the observation subjects in this study. RESULTS: The in vitro results suggested that CKLF1 was able to induce neuronal cells to undergo pyroptosis. In vivo pharmacodynamic results showed that Rg1 treatment was able to significantly improve symptoms in ischemic stroke rats. In addition, Rg1 treatment was able to inhibit the interaction between CKLF1 and CCR5 after ischemic stroke and inhibited CKLF1/CCR5 axis-induced pyroptosis. The results of related experiments in CKLF1-/- rats showed that Rg1 lost its therapeutic effect after CKLF1 knockdown. CONCLUSION: Our findings indicate that the activation of the NLRP3 inflammasome is initiated by the CKLF1/CCR5 axis, facilitated through the activation of the NF-κB pathway, ultimately resulting in the pyroptosis of neuronal cells. Conversely, Rg1 demonstrates the capability to mitigate neuronal cell damage following CKLF1-induced effects by suppressing the expression of CKLF1. Thus, CKLF1 represents a crucial target for Rg1 in the context of cerebral ischemia treatment, and it also holds promise as a potential target for drug screening in the management of ischemic stroke.


Asunto(s)
Isquemia Encefálica , Ginsenósidos , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Humanos , Ratas , Animales , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Piroptosis , Receptores de Quimiocina/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Receptores CCR5/uso terapéutico
13.
J Ethnopharmacol ; 323: 117585, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38159825

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Some species of Codonopsis (local name in Shanxi: Ludang) have long demonstrated high medicinal and economic value. Radix Codonopsis, the dried root of Codonopsis pilosula (Franch.) Nannf. (C. pilosula), Codonopsis pilosula var. modesta (Nannf.) L.D.Shen (C. pilosula var. modesta), or Codonopsis pilosula subsp. tangshen (Oliv.) D.Y.Hong (C. pilosula subsp. tangshen), was recorded as a traditional Chinese medicine back in the Qing Dynasty in Ben Cao Cong Xin. Radix Codonopsis, a valuable medicinal herb certified by the Chinese National Geographic Indication, is known for invigorating the spleen, nourishing the lungs, promoting blood circulation, and generating fluid properties. Given that chronic cerebral ischemia (CCI) is often associated with the symptoms of qi and blood deficiencies and fluid depletion, we explored the potential of Codonopsis decoction in the treatment of CCI. STUDY AIMS: We investigated the effects of Codonopsis decoction on cerebral blood flow (CBF) and cognitive function in rats with bilateral carotid artery occlusion after surgery; explored whether Codonopsis decoction alleviates pathological injuries in brain tissue of rats after 2-VO surgery; and assessed the impact of Codonopsis decoction on the expression of chemokines, hypoxia-inducible factors, and inflammatory mediators in rats after 2-VO surgery. MATERIALS AND METHODS: We used a 2-VO rat model to simulate CCI. We used a laser speckle imaging (LSI) system to observe changes in CBF before and after surgery. The goal was to examine variations in CBF at different time points after 2-VO surgery. For 4 weeks, the rats were orally administered Codonopsis decoction at doses of 2.7, 5.4, and 10.8 g/kg/day, or Ginaton at a dose of 43.2 mg/kg/day. To assess the effect of Codonopsis on cerebral hypoperfusion symptoms in rats, we conducted the Morris water maze (MWM), Barnes maze (BM), and forelimb grip strength tests. Additionally, pathological experiments including hematoxylin and eosin, Nissl, and Luxol fast blue staining were conducted. Furthermore, we used western blotting to detect changes in the levels of proteins such as the chemotactic factor CKLF1 and hypoxia-inducible actor 1-alpha (HIF-1α). RESULTS: One week after 2-VO surgery, cerebral arterial blood supply in the rats rapidly reduced to approximately 43.39% ± 3.53% of the preoperative level. Cerebral cortex perfusion reached its nadir within 24 h of surgery, gradually recovering and stabilizing by the fourth week after surgery. An integration of the results from the BM, MWM, and grip strength tests, which assessed cognitive function and forelimb strength in rats after 2-VO surgery, unequivocally revealed that Codonopsis treatment significantly reduced the latency period and increased the number of platform crossings in the MWM test. Ginaton exhibited a comparable effect. Moreover, both Codonopsis and Ginaton decreased the number of errors and the time required to locate the target hole in the BM test. Histopathological staining revealed that Codonopsis and Ginaton could ameliorate pathological damage in rats after CCI and reduce the release of factors such as CKLF1 and HIF-1α. CONCLUSION: Codonopsis decoction exerted its protective effects on CCI rats possibly by modulating the levels of chemokines, hypoxia-inducible factors, and neuroinflammatory mediators.


Asunto(s)
Isquemia Encefálica , Codonopsis , Ratas , Animales , Isquemia Encefálica/tratamiento farmacológico , Cognición , Circulación Cerebrovascular , Quimiocinas , Hipoxia
14.
Metab Brain Dis ; 38(8): 2627-2644, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37837601

RESUMEN

To elucidate the protective mechanism of lobetyolin on oxygen-glucose deprivation/reperfusion (OGD/R)-induced damage in BV2 microglial cells. The OGD/R model was established using a chemical modeling method to simulate in vivo brain ischemia in lobetyolin-pretreated BV2 cells. The optimum lobetyolin dosage, chemical concentration, and OGD/R modeling duration were screened. The changes in cell morphology were observed, and the levels of immune response-related factors, including tumor necrosis factor-α (TNF-α), interleukin-6, inducible nitric oxide synthase (iNOS), and cluster of differentiation (CD)206, were detected using the enzyme-linked immunosorbent assay. The expression of chemokine-like-factor-1 (CKLF1), hypoxia-inducible factor (HIF)-1α, TNF-α, and CD206, was detected using western blotting. The gene expression of M1 and M2 BV2 phenotype markers was assessed using quantitative polymerase chain reaction (qPCR). The localization of M1 and M2 BV2 markers was detected using immunofluorescence analysis. The results showed that lobetyolin could protect BV2 cells from OGD/R-induced damage. After OGD/R, CKLF1/C-C chemokine receptor type 4 (CCR4) levels increased in BV2 cells, whereas the CKLF1/CCR4 level was decreased due to lobetyolin pretreatment. Additionally, BV2 cells injured with OGD/R tended to be M1 type, but lobetyolin treatment shifted the phenotype of BV2 cells from M1 type to M2 type. Lobetyolin decreased the expression of TNF-α and HIF-1α but increased the expression of transforming growth factor-ß (TGF-ß) in BV2 cells, indicating a dose-effect relationship. The qPCR results showed that lobetyolin decreased the expression of CD16, CD32, and iNOS at the gene level and increased the expression of C-C-chemokine ligand-22 and TGF-ß. The immunofluorescence analysis showed that lobetyolin decreased CD16/CD32 levels and increased CD206 levels. Lobetyolin can protect BV2 cells from OGD/R-induced damage by regulating the phenotypic polarization of BV2 and decreasing inflammatory responses. Additionally, CKLF1/CCR4 may participate in regulating lobetyolin-induced polarization of BV2 cells via the HIF-1α pathway.


Asunto(s)
Oxígeno , Daño por Reperfusión , Humanos , Oxígeno/metabolismo , Microglía/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Glucosa/metabolismo , Fenotipo , Daño por Reperfusión/metabolismo , Quimiocinas/metabolismo , Reperfusión , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
15.
Biomed Pharmacother ; 167: 115545, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37734259

RESUMEN

Hypericin is widely utilized for its precise antidepressant properties, but its exact antidepressant mechanism remains unclear. Gap junctions, which were predominantly expressed in astrocytes in the central nervous system, are concerned with the pathogenesis of depression. However, the role of hypericin in gap junctional dysfunction in depression has rarely been investigated. Here, we found that gap junctions were ultra-structurally broadened in the chronic unpredictable stress (CUS) rat model of depression, while hypericin repaired the dysfunction of gap junctions. Suppression of gap junctions by bilateral injection of carbenoxolone (CBX) in the prefrontal cortex of rats significantly inhibited the restoration of gap junctional dysfunction in depression by hypericin. Meanwhile, hypericin failed to show antidepressant benefits. Furthermore, in corticosterone (CORT)-stimulated primary astrocytes derived from neonatal rats, hypericin dramatically reversed the phosphorylation of connexin 43 (Cx43), normalizing the expression of Cx43 and thereby ameliorating gap junctional dysfunction. Comparatively, CBX inhibited the remission of hypericin on gap junctional intercellular communication function. Gap junctional function might be a novel therapeutic target for hypericin in the treatment of depression and provide potential novel insights into the antidepressant mechanism of other herbal ingredients.

16.
Cell Death Dis ; 14(9): 594, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673867

RESUMEN

Parkinson's disease (PD) is pathologically manifested by the aggregation of α-synuclein, which has been envisioned as a promising disease-modifying target for PD. Here, we identified 20C, a bibenzyl compound derived from Gastrodia elata, able to inhibit the aggregation of A53T variants of α-synuclein directly in vitro. Computational analysis revealed that 20C binds to cavities in mature α-synuclein fibrils, and it indeed displays a strong interaction with α-synuclein and reduced their ß-sheet structure by microscale thermophoresis and circular dichroism, respectively. Moreover, incubating neural cells with 20C reduced the amounts of α-synuclein inclusions significantly. The treatment of A53T α-Syn transgenic mice with 20C significantly reduces the toxic α-synuclein levels, improves behavioral performance, rescues dopaminergic neuron, and enhances functional connections between SNc and PD associated brain areas. The transcriptome analysis of SNc demonstrated that 20C improves mitochondrial dynamics, which protects mitochondrial morphology and function against α-synuclein induced degeneration. Overall, 20C appears to be a promising candidate for the treatment of PD.


Asunto(s)
Gastrodia , Enfermedad de Parkinson , Animales , Ratones , alfa-Sinucleína/genética , Enfermedad de Parkinson/tratamiento farmacológico , Encéfalo , Neuronas Dopaminérgicas , Ratones Transgénicos
17.
Neurochem Int ; 169: 105584, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37454817

RESUMEN

Stroke, the third leading cause of death and disability worldwide, is classified into ischemic or hemorrhagic, in which approximately 85% of strokes are ischemic. Ischemic stroke occurs as a result of arterial occlusion due to embolus or thrombus, with ischemia in the perfusion territory supplied by the occluded artery. The traditional concept that ischemic stroke is solely a vascular occlusion disorder has been expanded to include the dynamic interaction between microglia, astrocytes, neurons, vascular cells, and matrix components forming the "neurovascular unit." Acute ischemic stroke triggers a wide spectrum of neurovascular disturbances, glial activation, and secondary neuroinflammation that promotes further injury, ultimately resulting in neuronal death. Microglia, as the resident macrophages in the central nervous system, is one of the first responders to ischemic injury and plays a significant role in post-ischemic neuroinflammation. In this review, we reviewed the mechanisms of microglia in multiple stages of post-ischemic neuroinflammation development, including acute, sub-acute and chronic phases of stroke. A comprehensive understanding of the dynamic variation and the time-dependent role of microglia in post-stroke neuroinflammation could aid in the search for more effective therapeutics and diagnostic strategies for ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Microglía , Enfermedades Neuroinflamatorias , Accidente Cerebrovascular/terapia , Macrófagos
18.
Cell Death Discov ; 9(1): 155, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165005

RESUMEN

Stroke has caused tremendous social stress worldwide, yet despite decades of research and development of new stroke drugs, most have failed and rt-PA (Recombinant tissue plasminogen activator) is still the accepted treatment for ischemic stroke. the complexity of the stroke mechanism has led to unsatisfactory efficacy of most drugs in clinical trials, indicating that there are still many gaps in our understanding of stroke. Pyroptosis is a programmed cell death (PCD) with inflammatory properties and are thought to be closely associated with stroke. Pyroptosis is regulated by the GSDMD of the gasdermin family, which when cleaved by Caspase-1/Caspase-11 into N-GSDMD with pore-forming activity can bind to the plasma membrane to form small 10-20 nm pores, which would allow the release of inflammatory factors IL-18 and IL-1ß before cell rupture, greatly exacerbating the inflammatory response. The pyroptosis occurs mainly in the border zone of cerebral infarction, and glial cells, neuronal cells and brain microvascular endothelial cells (BMECs) all undergo pyroptosis after stroke, which largely exacerbates the breakdown of the blood-brain barrier (BBB) and thus aggravates brain injury. Therefore, pyroptosis may be a good direction for the treatment of stroke. In this review, we focus on the latest mechanisms of action of pyroptosis and the process by which pyroptosis regulates stroke development. We also suggest potential therapeutic stroke drugs that target the pyroptosis pathway, providing additional therapeutic strategies for the clinical management of stroke. The role of pyroptosis after stroke. After stroke, microglia first rush to the damaged area and polarize into M1 and M2 types. Under the influence of various stimuli, microglia undergo pyroptosis, release pro-inflammatory factors, and are converted to the M1 type; astrocytes and neuronal cells also undergo pyroptosis under the stimulation of various pro-inflammatory factors, leading to astrocyte death due to increased osmotic pressure in the membrane, resulting in water absorption and swelling until rupture. BMECs, the main structural component of the BBB, also undergo pyroptosis when stimulated by pro-inflammatory factors released from microglia and astrocytes, leading to the destruction of the structural integrity of the BBB, ultimately causing more severe brain damage. In addition, GSDMD in neutrophils mainly mediate the release of NETs rather than pyroptosis, which also aggravates brain injury. IL-10=interleukin-10; TGF-ß = transforming growth factor-ß; IL-18=interleukin-18; IL-1ß = interleukin-1ß; TNF-α = tumor necrosis factor-α; iNOS=induced nitrogen monoxide synthase; MMPs=Matrix metalloproteinases; GSDMD = gasdermin D; BMECs=brain microvascular endothelial cells; BBB = blood-brain barrier.

19.
Acta Pharmacol Sin ; 44(10): 1935-1947, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37198412

RESUMEN

Chemokine receptor 5 (CCR5) is one of the main co-receptors of HIV-1, and has been found to be a potential therapeutic target for stroke. Maraviroc is a classic CCR5 antagonist, which is undergoing clinical trials against stroke. As maraviroc shows poor blood-brain barrier (BBB) permeability, it is of interest to find novel CCR5 antagonists suitable for neurological medication. In this study we characterized the therapeutic potential of a novel CCR5 antagonist A14 in treating ischemic stroke mice. A14 was discovered in screening millions compounds in the Chemdiv library based on the molecular docking diagram of CCR5 and maraviroc. We found that A14 dose-dependently inhibited the CCR5 activity with an IC50 value of 4.29 µM. Pharmacodynamic studies showed that A14 treatment exerted protective effects against neuronal ischemic injury both in vitro and vivo. In a SH-SY5Y cell line overexpressing CCR5, A14 (0.1, 1 µM) significantly alleviated OGD/R-induced cell injury. We found that the expression of CCR5 and its ligand CKLF1 was significantly upregulated during both acute and recovery period in focal cortical stroke mice; oral administration of A14 (20 mg·kg-1·d-1, for 1 week) produced sustained protective effect against motor impairment. A14 treatment had earlier onset time, lower onset dosage and much better BBB permeability compared to maraviroc. MRI analysis also showed that A14 treatment significantly reduced the infarction volume after 1 week of treatment. We further revealed that A14 treatment blocked the protein-protein interaction between CCR5 and CKLF1, increasing the activity of CREB signaling pathway in neurons, thereby improving axonal sprouting and synaptic density after stroke. In addition, A14 treatment remarkably inhibited the reactive proliferation of glial cells after stroke and reduced the infiltration of peripheral immune cells. These results demonstrate that A14 is a promising novel CCR5 antagonist for promoting neuronal repair after ischemic stroke. A14 blocked the protein-protein interaction between CKLF1 and CCR5 after stroke by binding with CCR5 stably, improved the infarct area and promoted motor recovery through reversing the CREB/pCREB signaling which was inhibited by activated CCR5 Gαi pathway, and benefited to the dendritic spines and axons sprouting.


Asunto(s)
Antagonistas de los Receptores CCR5 , Accidente Cerebrovascular Isquémico , Neuroblastoma , Accidente Cerebrovascular , Animales , Humanos , Ratones , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Maraviroc/uso terapéutico , Maraviroc/farmacología , Simulación del Acoplamiento Molecular , Receptores CCR5/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Antagonistas de los Receptores CCR5/química , Antagonistas de los Receptores CCR5/farmacología
20.
J Neuroinflammation ; 20(1): 97, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098609

RESUMEN

Ischemic stroke is characterized by the presence of reactive microglia. However, its precise involvement in stroke etiology is still unknown. We used metabolic profiling and showed that chemokine like factor 1 (CKLF1) causes acute microglial inflammation and metabolic reprogramming from oxidative phosphorylation to glycolysis, which was reliant on the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-hypoxia inducible factor 1α (HIF-1α) signaling pathway. Once activated, microglia enter a chronic tolerant state as a result of widespread energy metabolism abnormalities, which reduces immunological responses, including cytokine release and phagocytosis. Metabolically dysfunctional microglia were also found in mice using genome-wide RNA sequencing after chronic administration of CKLF1, and there was a decrease in the inflammatory response. Finally, we showed that the loss of CKLF1 reversed the defective immune response of microglia, as indicated by the maintenance its phagocytosis to neutrophils, thereby mitigating the long-term outcomes of ischemic stroke. Overall, CKLF1 plays a crucial role in the relationship between microglial metabolic status and immune function in stroke, which prepares a potential therapeutic strategy for ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Ratones , Citocinas/metabolismo , Tolerancia Inmunológica , Accidente Cerebrovascular Isquémico/metabolismo , Mamíferos/metabolismo , Microglía/metabolismo , Accidente Cerebrovascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA