RESUMEN
Biogas residue biochar (BRB) and BRB modified by ferric chloride (BRB-FeCl3) were applied to promote anaerobic digestion (AD) of food waste (FW), related mechanisms were also proposed in this study. Results indicated BRB-FeCl3 showed higher specific surface area, more abundant functional groups and impregnate iron than BRB, and they respectively increased 22.50% and 12.79% cumulative methane yields compared with control group because of accelerated volatile fatty acids (VFAs) transformation, which were confirmed by enhanced metabolism of glycolysis, fatty acid degradation and pyruvate. BRB, especially BRB-FeCl3 facilitated the growth of Syntrophomonas, Methanofollis, Methanoculleus and Methanosarcina, which further promoted the methanogenesis by enhancing the metabolic activities of methanol, dimethylamine and methylamine pathways, thereby causing more metabolically diverse methanogenic pathways. Metagenomics analysis revealed BRB, especially BRB-FeCl3 promoted the relative abundances of functional genes involved in direct interspecies electron transfer (DIET). Present study explored the enhancement mechanisms and feasibility of BRB-FeCl3 for AD process.
Asunto(s)
Biocombustibles , Eliminación de Residuos , Anaerobiosis , Reactores Biológicos , Carbón Orgánico , Cloruros , Compuestos Férricos , Alimentos , Metano/metabolismoRESUMEN
Food waste (FW) is important object of resource utilization and source of antibiotic resistance genes (ARGs). This study investigated the effects of biodrying combined with inoculating mature compost (B&M) on the composting efficiency, succession of bacterial communities and their links with metabolism functions as well as the fate of ARGs during FW composting. The results showed that B&M could rapidly raise and maintain high relative abundance of Bacillaceae (66.59-94.44%) as well as composting temperature (45.86-65.86 â), so as to achieve the final maturity of FW composting in a short time by regulating microbial carbohydrate (14.02-15.31%) and amino acid metabolism (10.33-12.47%). Network analysis demonstrated that high temperature could effectively inhibit the proliferation and spread of potential bacterial hosts of ARGs and integrons including Lactobacillaceae, Enterobacteriaceae, Leuconostocaceae and Corynebacteriaceae during the first two days of composting. As a result, B&M significantly reduced the absolute (72.09-99.47%) and relative abundances (0.31-2.44 logs) of nearly all ARGs especially ermB, tetM, blaCTX-M and blaOXA. Present study deepened the knowledge of ARGs variation, succession and metabolism functions of bacterial communities when B&M processes were used for FW composting, suggesting a promising technology for reducing the transmission risk of ARGs and reaching maturity of FW composting.
Asunto(s)
Compostaje , Eliminación de Residuos , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Alimentos , Genes Bacterianos , EstiércolRESUMEN
The occurrence of antibiotic resistance genes (ARGs) in waste activated sludge (WAS) fermentation was investigated with persulfate (PS)-based treatment. ARGs affiliated with multidrug (mexP), macrolide (blaOXA-129), tetracycline (tetB), sulfonamide (sul1), and vancomycin (vanRG) types were significantly decreased by PS/Fe treatment. Mechanistic investigations revealed that PS/Fe possessed oxidating potential and exhibited devastating effects on WAS fermentation. First, PS/Fe promoted cell structure damage, which facilitated ARGs release from potential hosts. A co-occurrence network analysis indicated that Fe/PS suppressed the proliferation of potential host bacteria. In addition, the PS/Fe treatment induced the decreased abundance of certain functional genes involved in pathways associated with ARGs dissemination. Finally, variation partitioning analysis demonstrated that the microbial community structure exhibited more vital effects on ARGs fates than physicochemical factors (i.e., pH and ORP) and gene expression (i.e., two-component system). This work provided a deeper understanding of the critical factors used to determine ARGs fates during WAS fermentation.
Asunto(s)
Antibacterianos , Aguas del Alcantarillado , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Fermentación , Genes Bacterianos/genética , Aguas ResidualesRESUMEN
Antibiotics are inevitably entered into anaerobic co-digestion (AcoD) system of food waste (FW) and sludge along with the addition of abundant antibiotic-containing activated sludge. However, the in-depth insights into antibiotics affecting AcoD performance have not comprehensively studied. In present study, the results showed that tetracycline (TC), sulfamethoxazole (SMZ) and erythromycin (ERY) inhibited and delayed methane production except for 5 mg/L ERY. By comparison, TC and SMZ significantly inhibited the cumulative methane yields (one-way ANOVA, p < 0.01), and the inhibition effects were magnified as the antibiotic level increased. Physicochemical and methane yield analysis indicated antibiotics inhibited hydrolysis process and delayed methanogenesis process, which was in line with the declined abundance of acetogenic Proteiniphilum and hydrogenotrophic Methanobacterium during AcoD. Furthermore, metatranscriptomic analysis demonstrated the microbial activities of major organic and energy metabolism were down-regulated under antibiotics exposure, thereby down-regulating the expressions of key coenzymes (coenzymes M, F420, methanofuran) biosynthesis for methanogenesis and methane metabolism. The declined methanogenesis activity was completely consistent with the inhibited activity of dominant Methanosarcina and methane production, proving the importance of Methanosarcina on methane production. This study provides new metatranscriptomic evidence into the effects of antibiotics on methanogenesis during AcoD.
Asunto(s)
Eliminación de Residuos , Aguas del Alcantarillado , Anaerobiosis , Antibacterianos/farmacología , Reactores Biológicos , Digestión , Alimentos , MetanoRESUMEN
The prevalence of antibiotic resistance genes (ARGs) has been widely reported in various environments. However, little is known of them in food waste (FW) leachate with high organic content and how their distribution is influenced by biotreatment processes. Here, twelve ARGs, two integrase genes and bacterial communities were investigated during two full-scale FW biotreatment processes. High ARGs abundances (absolute: 1.03 × 107-2.82 × 109copies/mL; relative: 0.076-2.778copies/16S rRNA) were observed across all samples. Although biotreatment effectively reduced absolute abundance of ARGs, additional bacteria acquiring ARGs caused an increase in their relative abundance, which further increased the transmission risk of ARGs. mexF, blaCTX-M, sul1 played crucial roles and sul1 might be considered as an indicator for the prediction of total ARGs. It is worrying that the discharge (effluent and sludge) included highly abundant ARGs (5.09 × 1014-4.83 × 1015copies/d), integrons (1.11 × 1014-6.04 × 1014copies/d) and potential pathogens (such as Pseudomonas and Streptococcus), which should be given more attentions. blaCTX-M and tetQ possessed most potential hosts, Proteobacteria-L and Firmicutes-W were predominant contributors of ARGs-hosts at genus level. This study suggested FW leachate biotreatment systems could be reservoirs of ARGs and facilitated the proliferation of them. The exploration of effective removal methods and formulation of emission standard are necessary for future ARGs mitigation.