Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nitric Oxide ; 152: 19-30, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260562

RESUMEN

The mutual regulation between hydrogen sulfide (H2S) and microRNA (miRNA) is involved in the development of many diseases, including cancer, cardiovascular disease, inflammatory disease, and high-risk pregnancy. Abnormal expressions of endogenous H2S-producing enzyme and miRNA in tissues and cells often indicate the occurrence of diseases, so the maintenance of their normal levels in the body can mitigate damages caused by various factors. Many studies have found that H2S can promote the migration, invasion, and proliferation of cancer cells by regulating the expression of miRNA, while many H2S donors can inhibit cancer progression by interfering with the proliferation, apoptosis, cell cycle, metastasis, and angiogenesis of cancer cells. Furthermore, the mutual regulation between H2S and miRNA can also prevent cell injury in cardiovascular disease and inflammatory disease through anti-inflammation, anti-oxidation, anti-apoptosis, and pro-autophagy. In addition, H2S can promote angiogenesis and relieve vasoconstriction by regulating the expression of miRNA, thereby improving fetal growth in high-risk pregnancy. In this review, we discuss the mechanism of mutual regulation between H2S and miRNA in various diseases, which may provide reliable therapeutic targets for these diseases.

2.
Cell Signal ; 124: 111406, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270916

RESUMEN

Cystathionine ß-synthase (CBS) occupies a key position as the initiating and rate-limiting enzyme in the sulfur transfer pathway and plays a vital role in health and disease. CBS is responsible for regulating the metabolism of cysteine, the precursor of glutathione (GSH), an important antioxidant in the body. Additionally, CBS is one of the three enzymes that produce hydrogen sulfide (H2S) in mammals through a variety of mechanisms. The dysregulation of CBS expression in cancer cells affects H2S production through direct or indirect pathways, thereby influencing cancer growth and metastasis by inducing angiogenesis, facilitating proliferation, migration, and invasion, modulating cellular energy metabolism, promoting cell cycle progression, and inhibiting apoptosis. It is noteworthy that CBS expression exhibits complex changes in different cancer models. In this paper, we focus on the CBS synthesis and metabolism, tissue distribution, potential mechanisms influencing tumor growth, and relevant signaling pathways. We also discuss the impact of pharmacological CBS inhibitors and silencing CBS in preclinical cancer models, supporting their potential as targeted cancer therapies.

3.
Chem Biol Interact ; 403: 111226, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39237072

RESUMEN

Hydrogen sulfide (H2S), an endogenous gasotransmitter, plays a key role in several critical physiological and pathological processes in vivo, including vasodilation, anti-infection, anti-tumor, anti-inflammation, and angiogenesis. In colorectal cancer (CRC), aberrant overexpression of H2S-producing enzymes has been observed. Due to the important role of H2S in the proliferation, growth, and death of cancer cells, H2S can serve as a potential target for cancer therapy. In this review, we thoroughly analyzed the underlying mechanism of action of H2S in CRC from the following aspects: the synthesis and catabolism of H2S in CRC cells and its effect on cell signal transduction pathways; the inhibition effects of exogenous H2S donors with different concentrations on the growth of CRC cells and the underlying mechanism of H2S in garlic and other natural products. Furthermore, we elucidate the expression characteristics of H2S in CRC and construct a comprehensive H2S-related signaling pathway network, which has important basic and practical significance for promoting the clinical research of H2S-related drugs.

4.
Food Sci Nutr ; 12(8): 5388-5402, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139947

RESUMEN

Pumpkin is an economically important crop all over the world. Approximately, 18%-21% of pumpkins, consisting of peels and seeds by-products, are wasted during processing. In addition, the seeds are rich in protein and have the potency of bioactive peptide production. This study aims to recognize the proteins and investigate the potential bioactive peptides from pumpkin (Cucurbita maxima) seeds. Pumpkin seeds were subjected to hot air drying (HAD) at 55°C for 12 h and freeze-drying (FD) at -80°C for 54 h before they were powdered, analyzed, and precipitated by isoelectric point to obtain pumpkin seed protein isolates (PSPI). PSPI comprised 11S globulin subunit beta, 2S seed storage albumin, and chaperonin CPN60-1. To generate hydrolysate peptides, PSPI was hydrolyzed using papain, pepsin, and bromelain. FD group pepsin hydrolysates had the highest peptide content of 420.83 mg/g. ACE inhibition and DPP-IV inhibition activity were analyzed for each enzymatic hydrolysate. The pepsin hydrolyzed sample exhibited the highest ACE inhibition of 70.26%, and the papain hydrolyzed sample exhibited the highest DPP-IV inhibition of 30.51%. The simulated gastrointestinal digestion (SGID) conducted by pepsin and pancreatin increased ACE inhibitory activity from 76.93% to 78.34%, and DPP-IV inhibited activity increased from 58.62% to 77.13%. Pepsin and papain hydrolysates were fractionated using ultrafiltration to measure ACE and DPP-IV inhibition activity. The highest free radical scavenging abilities were exhibited by the <1 kDa hydrolysate fractions with 78.34% ACE inhibitory activities and 79.55% DPP-IV inhibitory activities. This research revealed that pumpkin seeds had the potency to produce bioactive peptides.

5.
Exp Cell Res ; 442(2): 114233, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216662

RESUMEN

Gasotransmitters are endogenous gaseous signaling molecules that can freely pass through cell membranes and transmit signals between cells, playing multiple roles in cell signal transduction. Due to extensive and ongoing research in this field, we have successfully identified many gasotransmitters so far, among which nitric oxide, carbon monoxide, and hydrogen sulfide are best studied. Gasotransmitters are implicated in various diseases related to necroptosis, such as cardiovascular diseases, inflammation, ischemia-reperfusion, infectious diseases, and neurological diseases. However, the mechanisms of their effects on necroptosis are not fully understood. This review focuses on endogenous gasotransmitter synthesis and metabolism and discusses their roles in necroptosis, aiming to offer new insights for the therapeutic approaches to necroptosis-associated diseases.

6.
Cell Signal ; 120: 111236, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810860

RESUMEN

Hydrogen sulfide (H2S) is one of the three most crucial gaseous messengers in the body. The discovery of H2S donors, coupled with its endogenous synthesis capability, has sparked hope for the treatment of hematologic malignancies. In the last decade, the investigation into the impact of H2S has expanded, particularly within the fields of cardiovascular function, inflammation, infection, and neuromodulation. Hematologic malignancies refer to a diverse group of cancers originating from abnormal proliferation and differentiation of blood-forming cells, including leukemia, lymphoma, and myeloma. In this review, we delve deeply into the complex interrelation between H2S and hematologic malignancies. In addition, we comprehensively elucidate the intricate molecular mechanisms by which both H2S and its donors intricately modulate the progression of tumor growth. Furthermore, we systematically examine their impact on pivotal aspects, encompassing the proliferation, invasion, and migration capacities of hematologic malignancies. Therefore, this review may contribute novel insights to our understanding of the prospective therapeutic significance of H2S and its donors within the realm of hematologic malignancies.


Asunto(s)
Neoplasias Hematológicas , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Humanos , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patología , Animales , Proliferación Celular/efectos de los fármacos
7.
Sci Rep ; 11(1): 20457, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650154

RESUMEN

This study employed an electric discharge machine (EDM) and the Electrical Spark Discharge Method (ESDM) to prepare silver iodide nanocolloid (AgINC). Povidone-iodine (PVP-I) was dissolved in deionized water to create a dielectric fluid. Silver material was melted using the high temperature generated by an electric arc, and the peeled-off material was reacted with PVP-I to form AgI nanoparticles (AgINPs). Six discharge pulse wave parameter combinations (Ton-Toff) were employed, and the resultant particle size and suspension of the prepared samples were examined. The results revealed that AgINPs were successfully created using the ESDM. When Ton-Toff was set at 90-90 µs, the zeta potential of the AgINC was - 50.3 mV, indicating excellent suspension stability. The AgINC particle size was 16 nm, verifying that the parameters yielded AgINPs with the smallest particle size distribution and highest zeta potential. Ultraviolet-visible spectrum analyser was performed to analyse the samples, and the spectra indicated that the characteristic wavelength was 420 nm regardless of the Ton-Toff values. X-ray diffraction analysis determined that the AgINPs exhibited two crystal structures, namely ß-AgI and Ag. Transmission electron microscopy was performed and revealed that the particles were irregularly shaped and that some of the larger particles had aggregated. The crystal structure was determined to be a mixture of Ag and ß-AgI, with a lattice spacing of 0.235 nm and 0.229 nm, respectively. The lattice spacing of the Ag was 0.235 nm. X-ray diffraction analysis indicated that the prepared AgINC were composed of only Ag and I; no additional chemical elements were detected.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...