Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-31275867

RESUMEN

An effective vaccine against the Plasmodium parasite is likely to require the induction of robust antibody and T cell responses. Chimeric virus-like particles are an effective vaccine platform for induction of antibody responses, but their capacity to induce robust cellular responses and cell-mediated protection against pathogen challenge has not been established. To evaluate this, we produced chimeric constructs using the murine polyomavirus structural protein with surface-exposed CD8+ or CD4+ T cell or B cell repeat epitopes derived from the Plasmodium yoelii circumsporozoite protein, and assessed immunogenicity and protective capacity in a murine model. Robust CD8+ T cell responses were induced by immunization with the chimeric CD8+ T cell epitope virus-like particles, however CD4+ T cell responses were very low. The B cell chimeric construct induced robust antibody responses but there was no apparent synergy when T cell and B cell constructs were administered as a pool. A heterologous prime/boost regimen using plasmid DNA priming followed by a VLP boost was more effective than homologous VLP immunization for cellular immunity and protection. These data show that chimeric murine polyomavirus virus-like particles are a good platform for induction of CD8+ T cell responses as well as antibody responses.


Asunto(s)
Formación de Anticuerpos/inmunología , Antígenos de Protozoos/inmunología , Linfocitos T CD8-positivos/inmunología , Poliomavirus/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Animales , Anticuerpos Antiprotozoarios , Linfocitos B , Linfocitos T CD4-Positivos , Modelos Animales de Enfermedad , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Inmunidad Celular , Inmunización , Inmunización Secundaria , Vacunas contra la Malaria , Ratones , Ratones Endogámicos BALB C , Plasmodium yoelii , Poliomavirus/genética , Proteínas Protozoarias/inmunología , Vacunas de Partículas Similares a Virus/genética
2.
PLoS One ; 9(9): e107313, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25215874

RESUMEN

The success of recombinant virus-like particles (VLPs) for human papillomavirus and hepatitis B demonstrates the potential of VLPs as safe and efficacious vaccines. With new modular designs emerging, the effects of antigen module insertion on the self-assembly and structural integrity of VLPs should be clarified so as to better enabling improved design. Previous work has revealed insights into the molecular energetics of a VLP subunit, capsomere, comparing energetics within various solution conditions known to drive or inhibit self-assembly. In the present study, molecular dynamics (MD) simulations coupled with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method were performed to examine the molecular interactions and energetics in a modular capsomere of a murine polyomavirus (MPV) VLP designed to protect against influenza. Insertion of an influenza antigenic module is found to lower the binding energy within the capsomere, and a more active state is observed in Assembly Buffer as compared with that in Stabilization Buffer, which has been experimentally validated through measurements using differential scanning calorimetry. Further in-depth analysis based on free-energy decomposition indicates that destabilized binding can be attributed to electrostatic interaction induced by the chosen antigen module. These results provide molecular insights into the conformational stability of capsomeres and their abilities to be exploited for antigen presentation, and are expected to be beneficial for the biomolecular engineering of VLP vaccines.


Asunto(s)
Antígenos/inmunología , Proteínas de la Cápside/inmunología , Vacunas contra la Influenza/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Animales , Antígenos/genética , Rastreo Diferencial de Calorimetría , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Humanos , Vacunas contra la Influenza/genética , Ratones , Simulación de Dinámica Molecular , Poliomavirus/genética , Poliomavirus/inmunología , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/genética , Virión/química , Virión/genética , Virión/inmunología
3.
Vaccine ; 32(29): 3664-9, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24793947

RESUMEN

Nanotechnology promises a revolution in medicine including through new vaccine approaches. The use of nanoparticles in vaccination has, to date, focused on attaching antigen directly to or within nanoparticle structures to enhance antigen uptake by immune cells. Here we question whether antigen incorporation with the nanoparticle is actually necessary to boost vaccine effectiveness. We show that the immunogenicity of a sub-unit protein antigen was significantly boosted by formulation with silica nanoparticles even without specific conjugation of antigen to the nanoparticle. We further show that this effect was observed only for virus-sized nanoparticles (50 nm) but not for larger (1,000 nm) particles, demonstrating a pronounced effect of nanoparticle size. This non-attachment approach has potential to radically simplify the development and application of nanoparticle-based formulations, leading to safer and simpler nanoparticle applications in vaccine development.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Antígenos/inmunología , Vacunas contra la Influenza/inmunología , Nanopartículas/administración & dosificación , Hidróxido de Aluminio/administración & dosificación , Animales , Anticuerpos Antivirales/sangre , Escherichia coli/metabolismo , Vectores Genéticos , Inmunoglobulina G/sangre , Ratones Endogámicos BALB C , Tamaño de la Partícula , Dióxido de Silicio/administración & dosificación , Proteínas de la Matriz Viral/inmunología
4.
Biotechnol Bioeng ; 111(6): 1062-70, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24338691

RESUMEN

Effective and low-cost vaccines are essential to control severe group A streptococcus (GAS) infections prevalent in low-income nations and the Australian aboriginal communities. Highly diverse and endemic circulating GAS strains mandate broad-coverage and customized vaccines. This study describes an approach to deliver cross-reactive antigens from endemic GAS strains using modular virus-like particle (VLP) and capsomere systems. The antigens studied were three heterologous N-terminal peptides (GAS1, GAS2, and GAS3) from the GAS surface M-protein that are specific to endemic strains in Australia Northern Territory Aboriginal communities. In vivo data presented here demonstrated salient characteristics of the modular delivery systems in the context of GAS vaccine design. First, the antigenic peptides, when delivered by unadjuvanted modular VLPs or adjuvanted capsomeres, induced high titers of peptide-specific IgG antibodies (over 1 × 10(4) ). Second, delivery by capsomere was superior to VLP for one of the peptides investigated (GAS3), demonstrating that the delivery system relative effectiveness was antigen-dependant. Third, significant cross-reactivity of GAS2-induced IgG with GAS1 was observed using either VLP or capsomere, showing the possibility of broad-coverage vaccine design using these delivery systems and cross-reactive antigens. Fourth, a formulation containing three pre-mixed modular VLPs, each at a low dose of 5 µg (corresponding to <600 ng of each GAS peptide), induced significant titers of IgGs specific to each peptide, demonstrating that a multivalent, broad-coverage VLP vaccine formulation was possible. In summary, the modular VLPs and capsomeres reported here demonstrate, with promising preliminary data, innovative ways to design GAS vaccines using VLP and capsomere delivery systems amenable to microbial synthesis, potentially adoptable by developing countries.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Portadoras/inmunología , Vacunas Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Vacunas Sintéticas/inmunología , Vacunas de Virosoma/inmunología , Virosomas/metabolismo , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Portadoras/genética , Reacciones Cruzadas , Humanos , Inmunoglobulina G/sangre , Ratones , Nativos de Hawái y Otras Islas del Pacífico , Northern Territory/epidemiología , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/prevención & control , Vacunas Estreptocócicas/administración & dosificación , Vacunas Estreptocócicas/genética , Vacunas Estreptocócicas/aislamiento & purificación , Streptococcus pyogenes/genética , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/aislamiento & purificación , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/aislamiento & purificación , Vacunas de Virosoma/administración & dosificación , Vacunas de Virosoma/genética , Vacunas de Virosoma/aislamiento & purificación , Virosomas/genética
5.
Biotechnol Bioeng ; 111(3): 425-40, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24347238

RESUMEN

Virus-like particle (VLP) technology seeks to harness the optimally tuned immunostimulatory properties of natural viruses while omitting the infectious trait. VLPs that assemble from a single protein have been shown to be safe and highly efficacious in humans, and highly profitable. VLPs emerging from basic research possess varying levels of complexity and comprise single or multiple proteins, with or without a lipid membrane. Complex VLP assembly is traditionally orchestrated within cells using black-box approaches, which are appropriate when knowledge and control over assembly are limited. Recovery challenges including those of adherent and intracellular contaminants must then be addressed. Recent commercial VLPs variously incorporate steps that include VLP in vitro assembly to address these problems robustly, but at the expense of process complexity. Increasing research activity and translation opportunity necessitate bioengineering advances and new bioprocessing modalities for efficient and cost-effective production of VLPs. Emerging approaches are necessarily multi-scale and multi-disciplinary, encompassing diverse fields from computational design of molecules to new macro-scale purification materials. In this review, we highlight historical and emerging VLP vaccine approaches. We overview approaches that seek to specifically engineer a desirable immune response through modular VLP design, and those that seek to improve bioprocess efficiency through inhibition of intracellular assembly to allow optimal use of existing purification technologies prior to cell-free VLP assembly. Greater understanding of VLP assembly and increased interdisciplinary activity will see enormous progress in VLP technology over the coming decade, driven by clear translational opportunity.


Asunto(s)
Bioingeniería/métodos , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/aislamiento & purificación , Historia del Siglo XX , Historia del Siglo XXI , Vacunas de Partículas Similares a Virus/historia
6.
Vaccine ; 31(40): 4428-35, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23845811

RESUMEN

Biomolecular engineering enables synthesis of improved proteins through synergistic fusion of modules from unrelated biomolecules. Modularization of peptide antigen from an unrelated pathogen for presentation on a modular virus-like particle (VLP) represents a new and promising approach to synthesize safe and efficacious vaccines. Addressing a key knowledge gap in modular VLP engineering, this study investigates the underlying fundamentals affecting the ability of induced antibodies to recognize the native pathogen. Specifically, this quality of immune response is correlated to the peptide antigen module structure. We modularized a helical peptide antigen element, helix 190 (H190) from the influenza hemagglutinin (HA) receptor binding region, for presentation on murine polyomavirus VLP, using two strategies aimed to promote H190 helicity on the VLP. In the first strategy, H190 was flanked by GCN4 structure-promoting elements within the antigen module; in the second, dual H190 copies were arrayed as tandem repeats in the module. Molecular dynamics simulation predicted that tandem repeat arraying would minimize secondary structural deviation of modularized H190 from its native conformation. In vivo testing supported this finding, showing that although both modularization strategies conferred high H190-specific immunogenicity, tandem repeat arraying of H190 led to a strikingly higher immune response quality, as measured by ability to generate antibodies recognizing a recombinant HA domain and split influenza virion. These findings provide new insights into the rational engineering of VLP vaccines, and could ultimately enable safe and efficacious vaccine design as an alternative to conventional approaches necessitating pathogen cultivation.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Vacunas contra la Influenza/inmunología , Ingeniería de Proteínas , Vacunas Sintéticas/inmunología , Animales , Anticuerpos Antivirales/inmunología , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Ratones , Ratones Endogámicos BALB C , Simulación de Dinámica Molecular , Infecciones por Orthomyxoviridae/inmunología , Poliomavirus/genética , Poliomavirus/inmunología , Conformación Proteica , Vacunas de Partículas Similares a Virus
7.
Methods ; 60(3): 248-56, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23639868

RESUMEN

Virus-like particles (VLPs) are non-infectious and immunogenic virus-mimicking protein assemblies that are increasingly researched as vaccine candidates. Stability against aggregation is an important determinant dictating the viability of a pipeline VLP product, making multivariable stability data highly desirable especially in early product development stages. However, comprehensive formulation studies are challenging due to low sample availability early in developability assessment. This issue is exacerbated by industry-standard analytical techniques which are low-throughput and/or sample-consuming. This study presents a miniaturized high-throughput screening (MHTS) methodology for VLP formulation by integrating dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AF4) in a formulation funnel analysis. Using only 2 µg of sample and 100 s per measurement, a DLS plate reader was deployed to effectively pre-screen a large experimental space, allowing a smaller set of superior formulation conditions to be interrogated at high-resolution with AF4. The stabilizing effects of polysorbate 20, sucrose, trehalose, mannitol and sorbitol were investigated. MHTS data showed that addition of 0.5% w/v polysorbate 20 together with either 40% w/v sucrose or 40% w/v sorbitol could stabilize VLPs at elevated temperatures up to 58 °C. AF4 data further confirmed that the formulation containing 40% w/v sorbitol and 0.5% w/v polysorbate 20 effectively protected VLPs during freeze-thawing and freeze-drying, increasing recoveries from these processes by 80 and 50 percentage points, respectively. The MHTS strategy presented here could be used to rapidly explore a large formulation development space using reduced amounts of sample, without sacrificing the analytical resolution needed for quality control. Such a method paves the way for rapid formulation development and could potentially hasten the commercialization of new VLP vaccines.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Vacunas de Partículas Similares a Virus/química , Virión/química , Química Farmacéutica , Estabilidad de Medicamentos , Excipientes/química , Fraccionamiento de Campo-Flujo , Liofilización , Luz , Polisorbatos/química , Dispersión de Radiación , Sorbitol/química , Sacarosa/química
8.
J Phys Chem B ; 117(18): 5411-21, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23586433

RESUMEN

Virus-like particles (VLPs) are highly organized nanoparticles that have great potential in vaccinology, gene therapy, drug delivery, and materials science. However, the application of VLPs is hindered by obstacles in their design and production due to low efficiency of self-assembly. In the present study, all-atom (AA) molecular dynamics (MD) simulations coupled with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method are utilized to examine the molecular interactions in the capsomere of a murine polyomavirus (MPV) VLP. It is found that both low ionic strength and the intracapsomere disulfide bonds are favorable for maintaining a stable capsomere. Simulation results examining the effects of solution conditions on the stabilization of a capsomere were verified by calorimetry experiments. Simulation results of free energy decomposition indicate that hydrophobic interaction is favorable for the formation of a capsomere, whereas electrostatic interaction is unfavorable. With increasing ionic strength, the dominant interaction for the stabilization of a capsomere changes from hydrophobic to electrostatic. By comprehensive analyses, the key amino acid residues (hot spots) in VP1 protein aiding formation of a capsomere in different solution conditions have been identified. These results provide molecular insights into the stabilization of building blocks for VLP and are expected to have implications in their partitioning between the correct and off-pathway reactions in VLP assembly.


Asunto(s)
Simulación de Dinámica Molecular , Virión/química , Rastreo Diferencial de Calorimetría , Propiedades de Superficie , Vacunas de Partículas Similares a Virus/química
9.
Biotechnol Bioeng ; 110(9): 2343-51, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23532896

RESUMEN

Modularization of a peptide antigen for presentation on a microbially synthesized murine polyomavirus (MuPyV) virus-like particle (VLP) offers a new alternative for rapid and low-cost vaccine delivery at a global scale. In this approach, heterologous modules containing peptide antigenic elements are fused to and displayed on the VLP carrier, allowing enhancement of peptide immunogenicity via ordered and densely repeated presentation of the modules. This study addresses two key engineering questions pertaining to this platform, exploring the effects of (i) pre-existing carrier-specific immunity on modular VLP vaccine effectiveness and (ii) increase in the antigenic element number per VLP on peptide-specific immune response. These effects were studied in a mouse model and with modular MuPyV VLPs presenting a group A streptococcus (GAS) peptide antigen, J8i. The data presented here demonstrate that immunization with a modular VLP could induce high levels of J8i-specific antibodies despite a strong pre-existing anti-carrier immune response. Doubling of the J8i antigenic element number per VLP did not enhance J8i immunogenicity at a constant peptide dose. However, the strategy, when used in conjunction with increased VLP dose, could effectively increase the peptide dose up to 10-fold, leading to a significantly higher J8i-specific antibody titer. This study further supports feasibility of the MuPyV modular VLP vaccine platform by showing that, in the absence of adjuvant, modularized GAS antigenic peptide at a dose as low as 150 ng was sufficient to raise a high level of peptide-specific IgGs indicative of bactericidal activity.


Asunto(s)
Antígenos/inmunología , Péptidos/inmunología , Poliomavirus/inmunología , Vacunas de Partículas Similares a Virus , Animales , Portadores de Fármacos , Electroforesis en Gel de Poliacrilamida , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/inmunología
10.
Vaccine ; 31(15): 1950-5, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23422147

RESUMEN

Group A streptococcus (GAS) causes a wide range of diseases, some of them related to autoimmune diseases triggered by repeated GAS infections. Despite the fact that GAS primarily colonizes the mucosal epithelium of the pharynx, the main mechanism of action of most vaccine candidates is based on development of systemic antibodies that do not cross-react with host tissues, neglecting the induction of mucosal immunity that could potentially block disease transmission. Peptide antigens from GAS M-surface protein can confer protection against infection; however, translation of such peptides into immunogenic mucosal vaccines that can be easily manufactured remains a challenge. In this work, a modular murine polyomavirus (MuPyV) virus-like particle (VLP) was engineered to display a GAS antigenic peptide, J8i. Heterologous modules containing one or two J8i antigen elements were integrated with the MuPyV VLP, and produced using microbial protein expression, standard purification techniques and in vitro VLP assembly. Both modular VLPs, when delivered intranasally to outbred mice without adjuvant, induced significant titers of J8i-specific IgG and IgA antibodies, indicating significant systemic and mucosal responses, respectively. GAS colonization in the throats of mice challenged intranasally was reduced in these immunized mice, and protection against lethal challenge was observed. This study shows that modular MuPyV VLPs prepared using microbial synthesis have potential to facilitate cost-effective vaccine delivery to remote communities through the use of mucosal immunization.


Asunto(s)
Vacunas Bacterianas/inmunología , Inmunidad Mucosa/inmunología , Poliomavirus/genética , Streptococcus pyogenes/clasificación , Streptococcus pyogenes/inmunología , Vacunación , Vacunas de Partículas Similares a Virus/inmunología , Administración Intranasal , Animales , Formación de Anticuerpos/inmunología , Antígenos Bacterianos/inmunología , Vacunas Bacterianas/economía , Vacunas Bacterianas/genética , Femenino , Ratones , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/prevención & control , Vacunas de Partículas Similares a Virus/economía , Vacunas de Partículas Similares a Virus/genética
11.
Vaccine ; 29(41): 7154-62, 2011 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-21651936

RESUMEN

Studies on a platform technology able to deliver low-cost viral capsomeres and virus-like particles are described. The technology involves expression of the VP1 structural protein from murine polyomavirus (MuPyV) in Escherichia coli, followed by purification using scaleable units and optional cell-free VLP assembly. Two insertion sites on the surface of MuPyV VP1 are exploited for the presentation of the M2e antigen from influenza and the J8 peptide from Group A Streptococcus (GAS). Results from testing on mice following subcutaneous administration demonstrate that VLPs are self adjuvating, that adding adjuvant to VLPs provides no significant benefit in terms of antibody titre, and that adjuvanted capsomeres induce an antibody titre comparable to VLPs but superior to unadjuvanted capsomere formulations. Antibodies raised against GAS J8 peptide following immunization with chimeric J8-VP1 VLPs are bactericidal against a GAS reference strain. E. coli is easily and widely cultivated, and well understood, and delivers unparalleled volumetric productivity in industrial bioreactors. Indeed, recent results demonstrate that MuPyV VP1 can be produced in bioreactors at multi-gram-per-litre levels. The platform technology described here therefore has the potential to deliver safe and efficacious vaccine, quickly and cost effectively, at distributed manufacturing sites including those in less developed countries. Additionally, the unique advantages of VLPs including their stability on freeze drying, and the potential for intradermal and intranasal administration, suggest this technology may be suited to numerous diseases where adequate response requires large-scale and low-cost vaccine manufacture, in a way that is rapidly adaptable to temporal or geographical variation in pathogen molecular composition.


Asunto(s)
Biotecnología/métodos , Proteínas de la Cápside/metabolismo , Tecnología Farmacéutica/métodos , Virosomas/metabolismo , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antivirales/sangre , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Proteínas de la Cápside/genética , Escherichia coli/genética , Femenino , Expresión Génica , Ingeniería Genética/métodos , Ratones , Poliomavirus/genética , Poliomavirus/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus pyogenes/genética , Streptococcus pyogenes/inmunología , Vacunas de Virosoma/administración & dosificación , Vacunas de Virosoma/genética , Vacunas de Virosoma/inmunología , Vacunas de Virosoma/metabolismo , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología , Proteínas de la Matriz Viral/metabolismo , Virosomas/genética
12.
J R Soc Interface ; 7(44): 409-21, 2010 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19625304

RESUMEN

Viral self-assembly is of tremendous virological and biomedical importance. Although theoretical and crystallographic considerations suggest that controlled conformational change is a fundamental regulatory mechanism in viral assembly, direct proof that switching alters the thermodynamic attraction of self-assembling components has not been provided. Using the VP1 protein of polyomavirus, we report a new method to quantitatively measure molecular interactions under conditions of rapid protein self-assembly. We show, for the first time, that triggering virus capsid assembly through biologically relevant changes in Ca(2+) concentration, or pH, is associated with a dramatic increase in the strength of protein molecular attraction as quantified by the second virial coefficient (B(22)). B(22) decreases from -2.3 x 10(-4) mol ml g(-2) (weak protein-protein attraction) to -2.4 x 10(-3) mol ml g(-2) (strong protein attraction) for metastable and Ca(2+)-triggered self-assembling capsomeres, respectively. An assembly-deficient mutant (VP1CDelta63) is conversely characterized by weak protein-protein repulsion independently of chemical change sufficient to cause VP1 assembly. Concomitant switching of both VP1 assembly and thermodynamic attraction was also achieved by in vitro changes in ammonium sulphate concentration, consistent with protein salting-out behaviour. The methods and findings reported here provide new insight into viral assembly, potentially facilitating the development of new antivirals and vaccines, and will open the way to a more fundamental physico-chemical description of complex protein self-assembly systems.


Asunto(s)
Calcio/fisiología , Proteínas de la Cápside/fisiología , Poliomavirus/fisiología , Ensamble de Virus/fisiología , Sulfato de Amonio/farmacología , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Concentración de Iones de Hidrógeno , Modelos Biológicos , Poliomavirus/efectos de los fármacos , Poliomavirus/ultraestructura , Estructura Terciaria de Proteína , Termodinámica
13.
J Biotechnol ; 134(1-2): 64-71, 2008 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-18249455

RESUMEN

Pharmaceutically relevant virus-like particles (VLPs) can potentially be manufactured cheaply and efficiently through in vitro assembly of viral structural protein in cell-free reactors, but a bottleneck for this processing route is the currently low-level expression of soluble viral protein in efficient cell factories such as Escherichia coli (E. coli). Here, we report expression levels of up to 180 mg L(-1) that are achievable from low-cell-density E. coli cultures using a simple and low cost strategy. We investigated effects of host strain, plasmid, inducer concentration, pre-induction temperature and cell density at induction with design of experiment (DOE). The statistical approach successfully identified significant effects and their interactions, and provided insights into the role of codon-usage effects in expression of viral structural protein. In particular, our results support the notion that full codon optimization may be unnecessary to improve expression of viral genes rich in E. coli rare codons; using a strategically modified host cell could provide a simpler and cheaper alternative.


Asunto(s)
Escherichia coli/metabolismo , Proteínas Estructurales Virales/metabolismo , Secuencia de Bases , Escherichia coli/genética , Escherichia coli/ultraestructura , Regulación Viral de la Expresión Génica , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/ultraestructura
14.
Biotechnol Bioeng ; 99(6): 1425-33, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18023039

RESUMEN

Asymmetric flow field-flow fractionation (AFFFF) coupled with multiple-angle light scattering (MALS) is a powerful technique showing potential for the analysis of pharmaceutically-relevant virus-like particles (VLPs). A lack of published methods, and concerns that membrane adsorption during sample fractionation may cause sample aggregation, have limited widespread acceptance. Here we report a reliable optimized method for VLP analysis using AFFFF-MALS, and benchmark it against dynamic light scattering (DLS) and transmission electron microscopy (TEM). By comparing chemically identical VLPs having very different quaternary structure, sourced from both bacteria and insect cells, we show that optimized AFFFF analysis does not cause significant aggregation, and that accurate size and distribution information can be obtained for heterogeneous samples in a way not possible with TEM and DLS. Optimized AFFFF thus provides a quantitative way to monitor batch consistency for new vaccine products, and rapidly provides unique information on the whole population of particles within a sample.


Asunto(s)
Fraccionamiento Químico/métodos , Microfluídica/métodos , Nefelometría y Turbidimetría/métodos , Virión/aislamiento & purificación , Virión/ultraestructura , Algoritmos , Tamaño de la Partícula , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...