Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(25): 32490-32502, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38860873

RESUMEN

Efficient hydrogen generation from water splitting underpins chemistry to realize hydrogen economy. The electrocatalytic activity can be effectively modified by two-dimensional (2D) heterostructures, which offer great flexibility. Furthermore, they are useful in enhancing the exposure of the active sites for the hydrogen evolution reaction. Although the 1T-metallic phase of the transition metal dichalcogenides (TMDs) is important for the hydrogen evolution reaction (HER) catalyst, its practical application has not yet been much utilized because of the lack of stability of the 1T phase. Here, we introduce a novel approach to create a 1T-WS2/1T-WSe2 heterostructure using a low-temperature plasma-assisted chemical vapor reaction (PACVR), namely plasma-assisted sulfurization and plasma-assisted selenization processes. This heterostructure exhibits superior electrocatalytic performance due to the presence of the metallic 1T phase and the beneficial synergistic effect at the interface, which is attributed to the transfer of electrons from the underlying WS2 layer to the overlying WSe2 layer. The WS2/WSe2 heterostructure catalyst demonstrates remarkable performance in the HER as evidenced by its small Tafel slope of 57 mV dec-1 and exceptional durability. The usage of plasma helps in replacing the top S atoms with Se atoms, and this ion bombardment also increases the roughness of the thin film, thus adding another factor to enhance the HER performance. This plasma-synthesized low-temperature metallic-phase heterostructure brings out a novel method for the discovery of other catalysts.

2.
Small ; 20(17): e2307728, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38263806

RESUMEN

Herein, the structure of integrated M3D inverters are successfully demonstrated where a chemical vapor deposition (CVD) synthesized monolayer WSe2 p-type nanosheet FET is vertically integrated on top of CVD synthesized monolayer MoS2 n-type film FET arrays (2.5 × 2.5 cm) by semiconductor industry techniques, such as transfer, e-beam evaporation (EBV), and plasma etching processes. A low temperature (below 250 °C) is employed to protect the WSe2 and MoS2 channel materials from thermal decomposition during the whole fabrication process. The MoS2 NMOS and WSe2 PMOS device fabricated show an on/off current ratio exceeding 106 and the integrated M3D inverters indicate an average voltage gain of ≈9 at VDD = 2 V. In addition, the integrated M3D inverter demonstrates an ultra-low power consumption of 0.112 nW at a VDD of 1 V. Statistical analysis of the fabricated inverters devices shows their high reliability, rendering them suitable for large-area applications. The successful demonstration of M3D inverters based on large-scale 2D monolayer TMDs indicate their high potential for advancing the application of 2D TMDs in future integrated circuits.

3.
Nano Lett ; 24(1): 67-73, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38149785

RESUMEN

Two-dimensional transition metal nitrides offer intriguing possibilities for achieving novel electronic and mechanical functionality owing to their distinctive and tunable bonding characteristics compared to other 2D materials. We demonstrate here the enabling effects of strong bonding on the morphology and functionality of 2D tungsten nitrides. The employed bottom-up synthesis experienced a unique substrate stabilization effect beyond van-der-Waals epitaxy that favored W5N6 over lower metal nitrides. Comprehensive structural and electronic characterization reveals that monolayer W5N6 can be synthesized at large scale and shows semimetallic behavior with an intriguing indirect band structure. Moreover, the material exhibits exceptional resilience against mechanical damage and chemical reactions. Leveraging these electronic properties and robustness, we demonstrate the application of W5N6 as atomic-scale dry etch stops that allow the integration of high-performance 2D materials contacts. These findings highlight the potential of 2D transition metal nitrides for realizing advanced electronic devices and functional interfaces.

4.
ACS Appl Mater Interfaces ; 16(1): 1705-1711, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38145463

RESUMEN

Two-dimensional (2D) metal nitrides have garnered significant interest due to their potential applications in future electronics and quantum systems. However, the synthesis of such materials with sufficient uniformity and at relevant scales remains an unaddressed challenge. This study demonstrates the potential of confined growth to control and enhance the morphology of 2D metal nitrides. By restricting the reaction volume of vapor-liquid-solid reactions, an enhanced precursor concentration was achieved that reduces the nucleation density, resulting in larger grain sizes and suppression of multilayer growth. Detailed characterization reveals the importance of balancing the energetic and kinetic aspects of tungsten nitride formation toward this ability. The introduction of a promoter enabled the realization of large-scale, single-layer tungsten nitride with a uniform and high interfacial quality. Finally, our advance in morphology control was applied to the production of edge-enriched 2D tungsten nitrides with significantly enhanced hydrogen evolution ability, as indicated by an unprecedented Tafel slope of 55 mV/dec.

5.
Micromachines (Basel) ; 14(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37241683

RESUMEN

Graphene-an outstanding low-dimensional material-exhibited many physics behaviors that are unknown over the past two decades, e.g., exceptional matter-light interaction, large light absorption band, and high charge carrier mobility, which can be adjusted on arbitrary surfaces. The deposition approaches of graphene on silicon to form the heterostructure Schottky junctions was studied, unveiling new roadmaps to detect the light at wider-ranged absorption spectrums, e.g., far-infrared via excited photoemission. In addition, heterojunction-assisted optical sensing systems enable the active carriers' lifetime and, thereby, accelerate the separation speed and transport, and then they pave new strategies to tune high-performance optoelectronics. In this mini-review, an overview is considered concerning recent advancements in graphene heterostructure devices and their optical sensing ability in multiple applications (ultrafast optical sensing system, plasmonic system, optical waveguide system, optical spectrometer, or optical synaptic system) is discussed, in which the prominent studies for the improvement of performance and stability, based on the integrated graphene heterostructures, have been reported and are also addressed again. Moreover, the pros and cons of graphene heterostructures are revealed along with the syntheses and nanofabrication sequences in optoelectronics. Thereby, this gives a variety of promising solutions beyond the ones presently used. Eventually, the development roadmap of futuristic modern optoelectronic systems is predicted.

6.
Nat Commun ; 14(1): 2228, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076531

RESUMEN

The spacetime light cone is central to the definition of causality in the theory of relativity. Recently, links between relativistic and condensed matter physics have been uncovered, where relativistic particles can emerge as quasiparticles in the energy-momentum space of matter. Here, we unveil an energy-momentum analogue of the spacetime light cone by mapping time to energy, space to momentum, and the light cone to the Weyl cone. We show that two Weyl quasiparticles can only interact to open a global energy gap if they lie in each other's energy-momentum dispersion cones-analogous to two events that can only have a causal connection if they lie in each other's light cones. Moreover, we demonstrate that the causality of surface chiral modes in quantum matter is entangled with the causality of bulk Weyl fermions. Furthermore, we identify a unique quantum horizon region and an associated 'thick horizon' in the emergent causal structure.

7.
Adv Mater ; 35(12): e2207121, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642840

RESUMEN

Magnetic semimetals have increasingly emerged as lucrative platforms hosting spin-based topological phenomena in real and momentum spaces. Cr1+ δ Te2 is a self-intercalated magnetic transition metal dichalcogenide (TMD), which exhibits topological magnetism and tunable electron filling. While recent studies have explored real-space Berry curvature effects, similar considerations of momentum-space Berry curvature are lacking. Here, the electronic structure and transport properties of epitaxial Cr1+ δ Te2 thin films are systematically investigated over a range of doping, δ (0.33 - 0.71). Spectroscopic experiments reveal the presence of a characteristic semi-metallic band region, which shows a rigid like energy shift with δ. Transport experiments show that the intrinsic component of the anomalous Hall effect (AHE) is sizable and undergoes a sign flip across δ. Finally, density functional theory calculations establish a link between the doping evolution of the band structure and AHE: the AHE sign flip is shown to emerge from the sign change of the Berry curvature, as the semi-metallic band region crosses the Fermi energy. These findings underscore the increasing relevance of momentum-space Berry curvature in magnetic TMDs and provide a unique platform for intertwining topological physics in real and momentum spaces.

8.
ACS Omega ; 7(18): 15760-15768, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35571781

RESUMEN

Quantum spin Hall (QSH) insulators with large band gaps and dissipationless edge states are of both technological and scientific interest. Although numerous two-dimensional (2D) systems have been predicted to host the QSH phase, very few of them harbor large band gaps and retain their nontrivial band topology when they are deposited on substrates. Here, based on a first-principles analysis with hybrid functional calculations, we investigated the electronic and topological properties of inversion-asymmetric monolayer copper sulfide (Cu2S). Interestingly, we found that monolayer Cu2S possesses an intrinsic QSH phase, Rashba spin splitting, and a large band gap of 220 meV that is suitable for room-temperature applications. Most importantly, we constructed heterostructures of a Cu2S film on PtTe2, h-BN, and Cu(111) substrates and found that the topological properties remain preserved upon an interface with these substrates. Our findings suggest Cu2S as a possible platform to realize inversion-asymmetric QSH insulators with potential applications in low-dissipation electronic devices.

9.
Artículo en Inglés | MEDLINE | ID: mdl-35575457

RESUMEN

A proximity effect facilitates the penetration of Cooper pairs that permits superconductivity in a normal metal, offering a promising approach to turn heterogeneous materials into superconductors and develop exceptional quantum phenomena. Here, we have systematically investigated proximity-induced anisotropic superconductivity in a monolayer Ni-Pb binary alloy by combining scanning tunneling microscopy/spectroscopy (STM/STS) with theoretical calculations. By means of high-temperature growth, the (33×33)R30o Ni-Pb surface alloy has been fabricated on Pb(111) and the appearance of a domain boundary as well as a structural phase transition can be deduced from a half-unit-cell lattice displacement. Given the high spatial and energy resolution, tunneling conductance (dI/dU) spectra have resolved the reduced but anisotropic superconducting gap ΔNiPb ≈ 1.0 meV, in stark contrast to the isotropic ΔPb ≈ 1.3 meV. In addition, the higher density of states at the Fermi energy (D(EF)) of the Ni-Pb surface alloy results in an enhancement of coherence peak height. According to the same Tc ≈ 7.1 K with Pb(111) from the temperature-dependent ΔNiPb and the short decay length Ld ≈ 3.55 nm from the spatially monotonic decrease of ΔNiPb, both results are supportive of a proximity-induced superconductivity. Despite a lack of a bulk counterpart, the atomically thick Ni-Pb bimetallic compound opens a pathway to engineer superconducting properties down to the two-dimensional limit, giving rise to the emergence of anisotropic superconductivity via a proximity effect.

10.
Sci Rep ; 12(1): 4582, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35301355

RESUMEN

Topological Dirac materials are attracting a lot of attention because they offer exotic physical phenomena. An exhaustive search coupled with first-principles calculations was implemented to investigate 10 Zintl compounds with a chemical formula of CaM2X2 (M = Zn or Cd, X = N, P, As, Sb, or Bi) under three crystal structures: CaAl2Si2-, ThCr2Si2-, and BaCu2S2-type crystal phases. All of the materials were found to energetically prefer the CaAl2Si2-type structure based on total ground state energy calculations. Symmetry-based indicators are used to evaluate their topological properties. Interestingly, we found that CaM2Bi2 (M = Zn or Cd) are topological crystalline insulators. Further calculations under the hybrid functional approach and analysis using k · p model reveal that they exhibit topological Dirac semimetal (TDSM) states, where the four-fold degenerate Dirac points are located along the high symmetry line in-between Г to A points. These findings are verified through Green's function surface state calculations under HSE06. Finally, phonon spectra calculations revealed that CaCd2Bi2 is thermodynamically stable. The Zintl phase of AM2X2 compounds have not been identified in any topological material databases, thus can be a new playground in the search for new topological materials.

11.
J Phys Condens Matter ; 34(6)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34727535

RESUMEN

Cadmium oxide (CdO)-ZnO alloys (CdxZn1-xO) exhibit a transformation from the wurtzite to the rocksalt (RS) phase at a CdO composition of ∼70% with a drastic change in the band gap and electrical properties. RS-CdxZn1-xO alloys (x> 0.7) are particularly interesting for transparent conductor applications due to their wide band gap and high electron mobility. In this work, we synthesized RS-CdxZn1-xO alloys doped with different concentrations of In dopants and evaluated their electrical and optical properties. Experimental results are analyzed in terms of the amphoteric native defect model and compared directly to defect formation energies obtained by hybrid density functional theory (DFT) calculations. A saturation in electron concentration of ∼7 × 1020 cm-3accompanied by a rapid drop in electron mobility is observed for the RS-CdxZn1-xO films with 0.7 ⩽x< 1 when the In dopant concentration [In] is larger than 3%. Hybrid DFT calculations confirm that the formation energy of metal vacancy acceptor defects is significantly lower in RS-CdxZn1-xO than in CdO, and hence limits the free carrier concentration. Mobility calculations reveal that due to the strong compensation by native defects, RS-CdxZn1-xO alloys exhibit a compensation ratio of >0.7 for films withx< 0.8. As a consequence of the compensation by native defects, in heavily doped RS-CdxZn1-xO carrier-induced band filling effect is limited. Furthermore, the much lower mobility of the RS-CdxZn1-xO alloys also results in a higher resistivity and reduced transmittance in the near infra-red region (λ > 1100 nm), making the material not suitable as transparent conductors for full spectrum photovoltaics.

12.
Chem Sci ; 12(35): 11659-11667, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34667560

RESUMEN

Deciphering rich non-covalent interactions that govern many chemical and biological processes is crucial for the design of drugs and controlling molecular assemblies and their chemical transformations. However, real-space characterization of these weak interactions in complex molecular architectures at the single bond level has been a longstanding challenge. Here, we employed bond-resolved scanning probe microscopy combined with an exhaustive structural search algorithm and quantum chemistry calculations to elucidate multiple non-covalent interactions that control the cohesive molecular clustering of well-designed precursor molecules and their chemical reactions. The presence of two flexible bromo-triphenyl moieties in the precursor leads to the assembly of distinct non-planar dimer and trimer clusters by manifold non-covalent interactions, including hydrogen bonding, halogen bonding, C-H⋯π and lone pair⋯π interactions. The dynamic nature of weak interactions allows for transforming dimers into energetically more favourable trimers as molecular density increases. The formation of trimers also facilitates thermally-triggered intermolecular Ullmann coupling reactions, while the disassembly of dimers favours intramolecular cyclization, as evidenced by bond-resolved imaging of metalorganic intermediates and final products. The richness of manifold non-covalent interactions offers unprecedented opportunities for controlling the assembly of complex molecular architectures and steering on-surface synthesis of quantum nanostructures.

13.
Phys Chem Chem Phys ; 23(38): 21489-21495, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34550130

RESUMEN

Controllable fabrication of enantiospecific molecular superlattices is a matter of imminent scientific and technological interest. Herein, we demonstrate that long-range superlattice chirality in molecular self-assemblies can be tailored by tuning the interplay of weak intermolecular non-covalent interactions between hexaphenylbenzene-based enantiomers. By means of high-resolution scanning tunneling microscopy measurements, we demonstrate that the functionalization of a hexaphenylbenzene-based molecule with fluorine (F) atoms leads to the formation of molecular self-assemblies with distinct long-range chiral recognition patterns. We employed density functional theory calculations to quantify F-mediated lone pair F⋯π, C-H⋯F, and F⋯F interactions attributed to the distinct enantiospecific molecular self-organizations. Our findings underpin a viable route to fabricate long-range chiral recognition patterns in supramolecular assemblies by engineering the weak non-covalent intermolecular interactions.

14.
Nanoscale Adv ; 3(23): 6608-6616, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36132660

RESUMEN

Recent studies have demonstrated the feasibility of synthesizing two-dimensional (2D) Janus materials which possess intrinsic structural asymmetry. Hence, we performed a systematic first-principles study of 2D Janus transition metal dichalcogenide (TMD) monolayers based on PtXY (X,Y = S, Se, or Te). Our calculated formation energies show that these monolayer Janus structures retain the 1T phase. Furthermore, phonon spectral calculations confirm that these Janus TMD monolayers are thermodynamically stable. We found that PtSSe, PtSTe, and PtSeTe exhibit an insulating phase with indirect band gaps of 2.108, 1.335, and 1.221 eV, respectively, from hybrid functional calculations. Due to the breaking of centrosymmetry in the crystal structure, the spin-orbit coupling (SOC)-induced anisotropic Rashba splitting is observed around the M point. The calculated Rashba strengths from M to Γ (α M-Γ R) are 1.654, 1.103, and 0.435 eV Å-1, while the calculated values from M to K (α M-K R) are 1.333, 1.244, and 0.746 eV Å-1, respectively, for PtSSe, PtSTe, and PtSeTe. Interestingly, the spin textures reveal that the spin-splitting is mainly attributed to the Rashba effect. However, a Dresselhaus-like contribution also plays a secondary role. Finally, we found that the band gaps and the strength of the Rashba effect can be further tuned through biaxial strain. Our findings indeed show that Pt-based Janus TMDs demonstrate the potential for spintronics applications.

15.
ACS Nano ; 14(9): 12037-12044, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32885948

RESUMEN

The presence of two-dimensional (2D) layer-stacking heterostructures that can efficiently tune the interface properties by stacking desirable materials provides a platform to investigate some physical phenomena, such as the proximity effect and magnetic exchange coupling. Here, we report the observation of antisymmetric magnetoresistance in a van der Waals (vdW) antiferromagnetic/ferromagnetic (AFM/FM) heterostructure of MnPS3/Fe3GeTe2 when the temperature is below the Neel temperature of MnPS3. Distinguished from two resistance states in conventional giant magnetoresistance, the magnetoresistance in the MnPS3/Fe3GeTe2 heterostructure exhibits three states, of high, intermediate, and low resistance. This antisymmetric magnetoresistance spike is determined by an unsynchronized magnetic switching between the AFM/FM interface layer and the bulk of Fe3GeTe2 during magnetization reversal. Our work highlights that the artificial vdW stacking structure holds potential to explore some physical phenomena and spintronic device applications.

16.
Nat Commun ; 11(1): 4415, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887890

RESUMEN

Quantum states induced by single-atomic impurities are at the frontier of physics and material science. While such states have been reported in high-temperature superconductors and dilute magnetic semiconductors, they are unexplored in topological magnets which can feature spin-orbit tunability. Here we use spin-polarized scanning tunneling microscopy/spectroscopy (STM/S) to study the engineered quantum impurity in a topological magnet Co3Sn2S2. We find that each substituted In impurity introduces a striking localized bound state. Our systematic magnetization-polarized probe reveals that this bound state is spin-down polarized, in lock with a negative orbital magnetization. Moreover, the magnetic bound states of neighboring impurities interact to form quantized orbitals, exhibiting an intriguing spin-orbit splitting, analogous to the splitting of the topological fermion line. Our work collectively demonstrates the strong spin-orbit effect of the single-atomic impurity at the quantum level, suggesting that a nonmagnetic impurity can introduce spin-orbit coupled magnetic resonance in topological magnets.

17.
Nanoscale Res Lett ; 15(1): 56, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32140792

RESUMEN

We report a new graphene allotrope named HOT graphene containing carbon hexagons, octagons, and tetragons. A corresponding series of nanotubes are also constructed by rolling up the HOT graphene sheet. Ab initio calculations are performed on geometric and electronic structures of the HOT graphene and the HOT graphene nanotubes. Dirac cone and high Fermi velocity are achieved in a non-hexagonal structure of HOT graphene, implying that the honeycomb structure is not an indispensable condition for Dirac fermions to exist. HOT graphene nanotubes show distinctive electronic structures depending on their topology. The (0,1) n (n ≥ 3) HOT graphene nanotubes reveal the characteristics of semimetals, while the other set of nanotubes (1,0) n shows continuously adjustable band gaps (0~ 0.51 eV) with tube size. A competition between the curvature effect and the zone-folding approximation determines the band gaps of the (1,0) n nanotubes. Novel conversion between semimetallicity and semiconductivity arises in ultra-small tubes (radius < 4 Å, i.e., n < 3).

18.
Small ; 16(15): e1904271, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32196957

RESUMEN

Recently, 2D transition metal dichalcogenides (TMDs) have become intriguing materials in the versatile field of photonics and optoelectronics because of their strong light-matter interaction that stems from the atomic layer thickness, broadband optical response, controllable optoelectronic properties, and high nonlinearity, as well as compatibility. Nevertheless, the low optical cross-section of 2D-TMDs inhibits the light-matter interaction, resulting in lower quantum yield. Therefore, hybridizing the 2D-TMDs with plasmonic nanomaterials has become one of the promising strategies to boost the optical absorption of thin 2D-TMDs. The appeal of plasmonics is based on their capability to localize and enhance the electromagnetic field and increase the optical path length of light by scattering and injecting hot electrons to TMDs. In this regard, recent achievements with respect to hybridization of the plasmonic effect in 2D-TMDs systems and its augmented optical and optoelectronic properties are reviewed. The phenomenon of plasmon-enhanced interaction in 2D-TMDs is briefly described and state-of-the-art hybrid device applications are comprehensively discussed. Finally, an outlook on future applications of these hybrid devices is provided.

19.
Phys Rev Lett ; 124(3): 036402, 2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-32031832

RESUMEN

Platinum ditelluride (PtTe_{2}), a type-II Dirac semimetal, remains semimetallic in ultrathin films down to just two triatomic layers (TLs) with a negative gap of -0.36 eV. Further reduction of the film thickness to a single TL induces a Lifshitz electronic transition to a semiconductor with a large positive gap of +0.79 eV. This transition is evidenced by experimental band structure mapping of films prepared by layer-resolved molecular beam epitaxy, and by comparing the data to first-principles calculations using a hybrid functional. The results demonstrate a novel electronic transition at the two-dimensional limit through film thickness control.

20.
Angew Chem Int Ed Engl ; 59(21): 8270-8276, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32003098

RESUMEN

Ligand-induced surface restructuring with heteroatomic doping is used to precisely modify the surface of a prototypical [Au25 (SR1 )18 ]- cluster (1) while maintaining its icosahedral Au13 core for the synthesis of a new bimetallic [Au19 Cd3 (SR2 )18 ]- cluster (2). Single-crystal X-ray diffraction studies reveal that six bidentate Au2 (SR1 )3 motifs (L2) attached to the Au13 core of 1 were replaced by three quadridentate Au2 Cd(SR2 )6 motifs (L4) to create a bimetallic cluster 2. Experimental and theoretical results demonstrate a stronger electronic interaction between the surface motifs (Au2 Cd(SR2 )6 ) and the Au13 core, attributed to a more compact cluster structure and a larger energy gap of 2 compared to that of 1. These factors dramatically enhance the photoluminescence quantum efficiency and lifetime of crystal of the cluster 2. This work provides a new route for the design of a wide range of bimetallic/alloy metal nanoclusters with superior optoelectronic properties and functionality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...