Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nutr Diabetes ; 14(1): 65, 2024 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152116

RESUMEN

BACKGROUND: Diet and gut microbiota contribute to non-alcoholic steatohepatitis (NASH) progression. High-fat diets (HFDs) change gut microbiota compositions, induce gut dysbiosis, and intestinal barrier leakage, which facilitates portal influx of pathogen-associated molecular patterns including lipopolysaccharides (LPS) to the liver and triggers inflammation in NASH. Current therapeutic drugs for NASH have adverse side effects; however, several foods and herbs that exhibit hepatoprotection could be an alternative method to prevent NASH. METHODS: We investigated ginger essential oil (GEO) against palm oil-containing HFDs in LPS-injected murine NASH model. RESULTS: GEO reduced plasma alanine aminotransferase levels and hepatic pro-inflammatory cytokine levels; and increased antioxidant catalase, glutathione reductase, and glutathione levels to prevent NASH. GEO alleviated hepatic inflammation through mediated NLR family pyrin domain-containing 3 (NLRP3) inflammasome and LPS/Toll-like receptor four (TLR4) signaling pathways. GEO further increased beneficial bacterial abundance and reduced NASH-associated bacterial abundance. CONCLUSION: This study demonstrated that GEO prevents NASH progression which is probably associated with the alterations of gut microbiota and inhibition of the LPS/TLR4/NF-κB pathway. Hence, GEO may offer a promising application as a dietary supplement for the prevention of NASH.


Asunto(s)
Microbioma Gastrointestinal , Inflamasomas , Lipopolisacáridos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedad del Hígado Graso no Alcohólico , Aceites Volátiles , Transducción de Señal , Receptor Toll-Like 4 , Zingiber officinale , Animales , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Ratones , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Masculino , Transducción de Señal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Progresión de la Enfermedad , Hígado/metabolismo , Hígado/efectos de los fármacos , Modelos Animales de Enfermedad
2.
Commun Biol ; 7(1): 749, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902371

RESUMEN

Dietary emulsifiers are linked to various diseases. The recent discovery of the role of gut microbiota-host interactions on health and disease warrants the safety reassessment of dietary emulsifiers through the lens of gut microbiota. Lecithin, sucrose fatty acid esters, carboxymethylcellulose (CMC), and mono- and diglycerides (MDG) emulsifiers are common dietary emulsifiers with high exposure levels in the population. This study demonstrates that sucrose fatty acid esters and carboxymethylcellulose induce hyperglycemia and hyperinsulinemia in a mouse model. Lecithin, sucrose fatty acid esters, and CMC disrupt glucose homeostasis in the in vitro insulin-resistance model. MDG impairs circulating lipid and glucose metabolism. All emulsifiers change the intestinal microbiota diversity and induce gut microbiota dysbiosis. Lecithin, sucrose fatty acid esters, and CMC do not impact mucus-bacterial interactions, whereas MDG tends to cause bacterial encroachment into the inner mucus layer and enhance inflammation potential by raising circulating lipopolysaccharide. Our findings demonstrate the safety concerns associated with using dietary emulsifiers, suggesting that they could lead to metabolic syndromes.


Asunto(s)
Disbiosis , Emulsionantes , Microbioma Gastrointestinal , Enfermedades Metabólicas , Animales , Disbiosis/inducido químicamente , Disbiosis/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , Enfermedades Metabólicas/inducido químicamente , Enfermedades Metabólicas/microbiología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , Ratones Endogámicos C57BL , Carboximetilcelulosa de Sodio , Sacarosa/efectos adversos , Sacarosa/administración & dosificación , Sacarosa/metabolismo , Resistencia a la Insulina , Lecitinas
3.
Nutrients ; 16(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38674852

RESUMEN

Probiotics may protect against asthma. We want to investigate whether probiotics can reverse the adverse effects of phthalate exposure on asthma. We selected the female offspring of BALB/c mice, born from pregnant female mice fed with diethylhexyl phthalate (DEHP). They were continuously administrated DEHP and Lactobacillus salivarius ssp. salicinius SA-03 when they were 5 weeks old, and ovalbumin (OVA) for asthma induction started at 6 weeks for 32 days. The mice were divided into four groups (n = 6/group): 1. control group (C), 2. OVA/DEHP group (OD), 3. OVA/DEHP/probiotics low-dose group (ODP-1X), and OVA/DEHP/probiotics high-dose group (ODP-5X). We found that the administration of probiotics significantly reduced the asthma severity of the mice, as well as serum IgE and IL-5. In the ODP-5X group, the proportion of CD4+ cells in the lung was reduced, whereas IL-10 in serum and CD8+ cells in BALF were increased. In histopathology, the ODP group showed reduced infiltration of inflammatory cells, bronchial epithelial cell hyperplasia, and tracheal mucus secretion. These results might indicate that high-dose probiotics may affect anti-inflammatory cytokines and reduce asthma-relative indicators. The above results may provide evidence that high-dose probiotics supplementation might play a modulating role in DEHP causes of allergic asthma in the pediatric animal model.


Asunto(s)
Asma , Ratones Endogámicos BALB C , Probióticos , Animales , Asma/inducido químicamente , Probióticos/farmacología , Femenino , Ratones , Ovalbúmina , Ligilactobacillus salivarius , Dietilhexil Ftalato/toxicidad , Modelos Animales de Enfermedad , Embarazo , Pulmón/patología , Pulmón/efectos de los fármacos , Suplementos Dietéticos , Inmunoglobulina E/sangre , Líquido del Lavado Bronquioalveolar
4.
Gut Microbes ; 16(1): 2300847, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38439565

RESUMEN

Dietary patterns and corresponding gut microbiota profiles are associated with various health conditions. A diet rich in polyphenols, primarily plant-based, has been shown to promote the growth of probiotic bacteria in the gastrointestinal tract, subsequently reducing the risk of metabolic disorders in the host. The beneficial effects of these bacteria are largely due to the specific metabolites they produce, such as short-chain fatty acids and membrane proteins. In this study, we employed a metabolomics-guided bioactive metabolite identification platform that included bioactivity testing using in vitro and in vivo assays to discover a bioactive metabolite produced from probiotic bacteria. Through this approach, we identified 5'-methylthioadenosine (MTA) as a probiotic bacterial-derived metabolite with anti-obesity properties. Furthermore, our findings indicate that MTA administration has several regulatory impacts on liver functions, including modulating fatty acid synthesis and glucose metabolism. The present study elucidates the intricate interplay between dietary habits, gut microbiota, and their resultant metabolites.


Asunto(s)
Desoxiadenosinas , Microbioma Gastrointestinal , Enfermedades Metabólicas , Tionucleósidos , Humanos , Metionina , Bifidobacterium , Racemetionina
5.
NPJ Biofilms Microbiomes ; 10(1): 2, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228675

RESUMEN

Locomotor activity is an innate behavior that can be triggered by gut-motivated conditions, such as appetite and metabolic condition. Various nutrient-sensing receptors distributed in the vagal terminal in the gut are crucial for signal transduction from the gut to the brain. The levels of gut hormones are closely associated with the colonization status of the gut microbiota, suggesting a complicated interaction among gut bacteria, gut hormones, and the brain. However, the detailed mechanism underlying gut microbiota-mediated endocrine signaling in the modulation of locomotion is still unclear. Herein, we show that broad-spectrum antibiotic cocktail (ABX)-treated mice displayed hypolocomotion and elevated levels of the gut hormone glucagon-like peptide-1 (GLP-1). Blockade of the GLP-1 receptor and subdiaphragmatic vagal transmission rescued the deficient locomotor phenotype in ABX-treated mice. Activation of the GLP-1 receptor and vagal projecting brain regions led to hypolocomotion. Finally, selective antibiotic treatment dramatically increased serum GLP-1 levels and decreased locomotion. Colonizing Lactobacillus reuteri and Bacteroides thetaiotaomicron in microbiota-deficient mice suppressed GLP-1 levels and restored the hypolocomotor phenotype. Our findings identify a mechanism by which specific gut microbes mediate host motor behavior via the enteroendocrine and vagal-dependent neural pathways.


Asunto(s)
Microbioma Gastrointestinal , Péptido 1 Similar al Glucagón , Ratones , Animales , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Nervio Vago/metabolismo , Transducción de Señal
6.
Microbiol Spectr ; 12(1): e0186823, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38018983

RESUMEN

IMPORTANCE: The link between gut microbiota and diet is crucial in the development of non-alcoholic steatohepatitis (NASH). This study underscores the essential role of a healthy diet in preventing and treating NASH by reversing obesity, lipidemia, and gut microbiota dysbiosis. Moreover, the supplementation of functional food or drug to the diet can provide additional advantages by inhibiting hepatic inflammation through the modulation of the hepatic inflammasome signaling pathway and partially mediating the gut microbiota and lipopolysaccharide signaling pathway. This study highlights the importance of adopting healthy dietary habits in treating NASH and proposes that supplementing with ginger essential oil or obeticholic acid may offer additional benefits. Nonetheless, further clinical studies are necessary to validate these findings.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Dieta Saludable , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo
7.
Lab Anim Res ; 39(1): 27, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37941082

RESUMEN

BACKGROUND: Feline mammary carcinoma (FMC) is one of the most prevalent malignancies of female cats. FMC is highly metastatic and thus leads to poor disease outcomes. Among all metastases, liver metastasis occurs in about 25% of FMC patients. However, the mechanism underlying hepatic metastasis of FMC remains largely uncharacterized. RESULTS: Herein, we demonstrate that FMC-derived extracellular vesicles (FMC-EVs) promotes the liver metastasis of FMC by activating hepatic stellate cells (HSCs) to prime a hepatic premetastatic niche (PMN). Moreover, we provide evidence that sphingosine kinase 1 (SK1) delivered by FMC-EV was pivotal for the activation of HSC and the formation of hepatic PMN. Depletion of SK1 impaired cargo sorting in FMC-EV and the EV-potentiated HSC activation, and abolished hepatic colonization of FMC cells. CONCLUSIONS: Taken together, our findings uncover a previously uncharacterized mechanism underlying liver-metastasis of FMC and provide new insights into prognosis and treatment of this feline malignancy.

8.
J Allergy Clin Immunol Glob ; 2(4): 100163, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37781663

RESUMEN

Background: Reinforcement of the immune-regulatory pathway is a feasible strategy for prevention and therapy of allergic asthma. The short-chain fatty acids (SCFAs) acetate, propionate, and butyrate are pleiotropic microbial fermentation products known to induce regulatory T (Treg) cells and exert an immune-regulatory effect. The cellular mechanism underlying SCFA immune regulation in asthma is not fully understood. Objective: We investigated the role of myeloid-derived suppressor cells (MDSCs) and Treg cells, the immune-regulatory cells of innate and adaptive origin, respectively, in SCFA-elicited protection against allergic airway inflammation. Methods: BALB/c mice were given SCFA-containing drinking water before being rendered asthmatic in response to ovalbumen. When indicated, mice were given a GR1-depleting antibody to investigate the function of MDSCs in allergic inflammation of the airways. MDSCs were sorted to examine their immunosuppressive function and interaction with T cells. Results: The mice receiving SCFAs developed less severe asthma that was accompanied by expansion of PMN-MDSCs and Treg cells. Mice depleted of PMN-MDSCs exhibited aggravated asthma, and the protective effect of SCFAs was abrogated after PMN-MDSC depletion. SCFAs were able to directly induce T-cell differentiation toward Treg cells. Additionally, we found that PMN-MDSCs enhanced Treg cell expansion in a cell contact-dependent manner. Whilst membrane-bound TGF-ß has been shown to induce Treg cell differentiation, we found that MDSCs upregulated surface expression of TGF-ß after coculture with T-cells and that MDSC-induced Treg cell differentiation was partially inhibited by TGF-ß blockage. Conclusions: Although previous studies revealed Treg cells as the effector mechanism of SCFA immune regulation, we found that SCFAs ameliorate allergic airway inflammation by relaying immune regulation, with sequential induction of PMN-MDSCs and Treg cells.

9.
Nat Commun ; 14(1): 5971, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749090

RESUMEN

Obesity and type 2 diabetes have reached pandemic proportion. ALDH2 (acetaldehyde dehydrogenase 2, mitochondrial) is the key metabolizing enzyme of acetaldehyde and other toxic aldehydes, such as 4-hydroxynonenal. A missense Glu504Lys mutation of the ALDH2 gene is prevalent in 560 million East Asians, resulting in reduced ALDH2 enzymatic activity. We find that male Aldh2 knock-in mice mimicking human Glu504Lys mutation were prone to develop diet-induced obesity, glucose intolerance, insulin resistance, and fatty liver due to reduced adaptive thermogenesis and energy expenditure. We find reduced activity of ALDH2 of the brown adipose tissue from the male Aldh2 homozygous knock-in mice. Proteomic analyses of the brown adipose tissue from the male Aldh2 knock-in mice identifies increased 4-hydroxynonenal-adducted proteins involved in mitochondrial fatty acid oxidation and electron transport chain, leading to markedly decreased fatty acid oxidation rate and mitochondrial respiration of brown adipose tissue, which is essential for adaptive thermogenesis and energy expenditure. AD-9308 is a water-soluble, potent, and highly selective ALDH2 activator. AD-9308 treatment ameliorates diet-induced obesity and fatty liver, and improves glucose homeostasis in both male Aldh2 wild-type and knock-in mice. Our data highlight the therapeutic potential of reducing toxic aldehyde levels by activating ALDH2 for metabolic diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hígado Graso , Humanos , Masculino , Ratones , Animales , Diabetes Mellitus Tipo 2/genética , Proteómica , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Mutación , Obesidad/genética , Ácidos Grasos , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo
10.
NPJ Sci Food ; 7(1): 19, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210385

RESUMEN

Recently, the role of the gut microbiota in diseases, including cardiovascular disease (CVD), has gained considerable research attention. Trimethylamine-N-oxide (TMAO), which is formed during ʟ-carnitine metabolism, promotes the formation of atherosclerotic plaques, causing thrombosis. Here, we elucidated the anti-atherosclerotic effect and mechanism of ginger (Zingiber officinale Roscoe) essential oil (GEO) and its bioactive compound citral in Gubra Amylin NASH (GAN) diet with ʟ-carnitine-induced atherosclerosis female ApoE-/- mice. Treatment with GEO at both low and high doses and citral inhibited the formation of aortic atherosclerotic lesions, improved plasma lipid profile, reduced blood sugar, improved insulin resistance, decreased plasma TMAO levels, and inhibited plasma inflammatory cytokines, especially interleukin-1ß. Additionally, GEO and citral treatment modulated gut microbiota diversity and composition by increasing the abundance of beneficial microbes and decreasing the abundance of CVD-related microbes. Overall, these results showed that GEO and citral may serve as potential dietary supplements for CVD prevention by improving gut microbiota dysbiosis.

11.
mSystems ; 7(3): e0017222, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35670534

RESUMEN

Antibiotics used as growth promoters in livestock and animal husbandry can be detected in animal-derived food. Epidemiological studies have indicated that exposure to these antibiotic residues in food may be associated with childhood obesity. Herein, the effect of exposure to a residual dose of tylosin-an antibiotic growth promoter-on host metabolism and gut microbiota was explored in vivo. Theoretical maximal daily intake (TMDI) doses of tylosin were found to facilitate high-fat-diet-induced obesity, induce insulin resistance, and perturb gut microbiota composition in mice. The obesity-related phenotypes were transferrable to germfree recipient mice, indicating that the effects of a TMDI dose of tylosin on obesity and insulin resistance occurred mainly via alteration of the gut microbiota. Tylosin TMDI exposure restricted to early life, the critical period of gut microbiota development, altered the abundance of specific bacteria related to host metabolic homeostasis later in life. Moreover, early-life exposure to tylosin TMDI doses was sufficient to modify the ratio of primary to secondary bile acids, thereby inducing lasting metabolic consequences via the downstream FGF15 signaling pathway. Altogether, these findings demonstrate that exposure to very low doses of antibiotic residues, whether continuously or in early life, could exert long-lasting effects on host metabolism by altering the gut microbiota and its metabolites. IMPORTANCE This study demonstrates that even with limited exposure in early life, a residual dose of tylosin might cause long-lasting metabolic disturbances by altering the gut microbiota and its metabolites. Our findings reveal that the gut microbiota is susceptible to previously ignored environmental factors.


Asunto(s)
Microbioma Gastrointestinal , Resistencia a la Insulina , Obesidad Infantil , Animales , Ratones , Antibacterianos/farmacología , Tilosina/farmacología , Ácidos y Sales Biliares/farmacología , Exposición Dietética
12.
PLoS One ; 17(5): e0264934, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35522651

RESUMEN

Atherosclerosis is the main cause of cardiac and peripheral vessel infarction in developed countries. Recent studies have established that gut microbiota and their metabolites play important roles in the development and progression of cardiovascular disease; however, the underlying mechanisms remain unclear. The present study aimed to investigate endothelium plaque lesion formation in ApoE-deficient rats fed a normal chow diet under germ-free (GF) and specific-pathogen-free (SPF) conditions at various time points. There was no difference in serum cholesterol and triglyceride levels between SPF-rats and GF-rats. Histological studies revealed that the GF-rats developed endothelium plaques in the aorta from 26 to 52 weeks, but this was not observed in SPF-rats. GF-rat coronary arteries had moderate-to-severe endothelium lesions during this time period, but SPF-rat coronary arteries had only mild lesion formation. Immunohistochemical staining showed higher accumulation of CD68-positive and arginase-negative foamy-like macrophages on the arterial walls of GF-rats, and expression of TNF-α and IL-6 in foam cells was only observed in GF-rats. In addition, microbial metabolites, including equol derivatives, enterolactone derivatives, indole-3-propionate, indole-3-acrylic acid, cholic acid, hippuric acid, and isoquinolone, were significantly higher in the SPF group than in the GF group. In conclusion, our results indicate that gut microbiota may attenuate atherosclerosis development.


Asunto(s)
Aterosclerosis , Microbioma Gastrointestinal , Placa Aterosclerótica , Animales , Apolipoproteínas E/genética , Endotelio , Indoles , Ratas
13.
NPJ Biofilms Microbiomes ; 8(1): 4, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087050

RESUMEN

Cardiovascular disease (CVD) is strongly associated with the gut microbiota and its metabolites, including trimethylamine-N-oxide (TMAO), formed from metaorganismal metabolism of ʟ-carnitine. Raw garlic juice, with allicin as its primary compound, exhibits considerable effects on the gut microbiota. This study validated the benefits of raw garlic juice against CVD risk via modulation of the gut microbiota and its metabolites. Allicin supplementation significantly decreased serum TMAO in ʟ-carnitine-fed C57BL/6 J mice, reduced aortic lesions, and altered the fecal microbiota in carnitine-induced, atherosclerosis-prone, apolipoprotein E-deficient (ApoE-/-) mice. In human subjects exhibiting high-TMAO production, raw garlic juice intake for a week reduced TMAO formation, improved gut microbial diversity, and increased the relative abundances of beneficial bacteria. In in vitro and ex vivo studies, raw garlic juice and allicin inhibited γ-butyrobetaine (γBB) and trimethylamine production by the gut microbiota. Thus, raw garlic juice and allicin can potentially prevent cardiovascular disease by decreasing TMAO production via gut microbiota modulation.


Asunto(s)
Aterosclerosis , Ajo , Microbioma Gastrointestinal , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Disulfuros , Humanos , Metilaminas , Ratones , Ratones Endogámicos C57BL , Óxidos , Ácidos Sulfínicos
14.
Cell Rep ; 37(8): 110016, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34818535

RESUMEN

Strengthening the gut epithelial barrier is a potential strategy for management of gut microbiota-associated illnesses. Here, we demonstrate that dual-specificity phosphatase 6 (Dusp6) knockout enhances baseline colon barrier integrity and ameliorates dextran sulfate sodium (DSS)-induced colonic injury. DUSP6 mutation in Caco-2 cells enhances the epithelial feature and increases mitochondrial oxygen consumption, accompanied by altered glucose metabolism and decreased glycolysis. We find that Dusp6-knockout mice are more resistant to DSS-induced dysbiosis, and the cohousing and fecal microbiota transplantation experiments show that the gut/fecal microbiota derived from Dusp6-knockout mice also confers protection against colitis. Further culturomics and mono-colonialization experiments show that one gut microbiota member in the genus Duncaniella confers host protection from DSS-induced injury. We identify Dusp6 deficiency as beneficial for shaping the gut microbiota eubiosis necessary to protect against gut barrier-related diseases.


Asunto(s)
Colitis/microbiología , Fosfatasa 6 de Especificidad Dual/metabolismo , Microbioma Gastrointestinal/fisiología , Animales , Células CACO-2 , Colitis/prevención & control , Colon/metabolismo , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Fosfatasa 6 de Especificidad Dual/deficiencia , Fosfatasa 6 de Especificidad Dual/genética , Disbiosis/metabolismo , Células Epiteliales/metabolismo , Heces , Femenino , Humanos , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Ribosómico 16S/metabolismo
15.
Animals (Basel) ; 11(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34438836

RESUMEN

Feline mammary tumor is a relatively commonly diagnosed neoplasm in the cat. Development of new veterinary cancer therapies is limited by the shortage of in vivo models that reproduce tumor microenvironment and metastatic progression. Four feline mammary tumor orthotopic patient-derived xenograft model (PDX) successfully established in NOD-SCID gamma (NSG) mice. The overall success rate of PDX establishment was 36% (4/11). Histological, immunohistochemical, and short tandem repeat analysis showed a remarkable similarity between patient's tumor and xenograft. The tumor grafts conserve original tumor essential features, including distant metastasis. Primary FMT-1807 cell line isolated from FMT-1807PDX tumor tissue. Tumorigenicity of FMT-1807 cells expanded from PDX was assessed by orthotopic injection into NSG mice. Mice yielded tumors which preserve the lung and liver metastasis ability. This work provides a platform for FMT translational investigation.

16.
Biology (Basel) ; 10(8)2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34439969

RESUMEN

Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a critical enzyme involved in ethanol clearance in acetaldehyde metabolism and plays a key role in protecting the liver. The ALDH2*2 mutation causes a significant decrease in acetaldehyde scavenging capacity, leading to the accumulation of acetaldehyde after consuming alcohol. The prevalence of the ALDH2*2 variant is in 45% of Taiwanese individuals. ALDH2 reportedly has protective properties on myocardial damage, stroke, and diabetic retina damage. However, the effects of ALDH2 in the modulation of metabolic syndromes remain unclear. This study evaluates the roles of ALDH2 in a high-fat-diet-induced metabolic syndrome in mice. Male (M) and female (F) wild-type (WT) and ALDH2 knock-in C57BL/6J mice (4-5 weeks old) were fed a high-fat diet for 16 weeks. Results showed that the body and white-adipose-tissue weights were significantly increased in ALDH2-M compared to those in the other groups. We observed markedly elevated serum levels of alanine transaminase and glucose. Oral glucose-tolerance test and homeostasis-model assessment of insulin resistance (HOMA-IR) values were significantly higher in ALDH2-M mice than those in WT-M mice, with no observable differences in female mice. Abundant steatosis and inflammatory cells were observed in ALDH2-M, with significantly decreased expression of hepatic genes IRS2, GLUT4, and PGC-1α compared to that in WT-M. ALDH2 gene mutation also affected the ß-diversity of gut microbiota in ALDH2-M resulting in the decreased abundance of Actinobacteria and an increase in Deferribacteres. Our results suggest that potential changes in gut microbiota may be associated with the defective ALDH2 exacerbation of high-fat-diet-induced liver diseases in male mice. However, female mice were not affected, and sex hormones may be an important factor that requires further investigation.

17.
Front Endocrinol (Lausanne) ; 12: 612946, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897617

RESUMEN

The progression of metabolic dysfunction associated fatty liver disease (MAFLD) leads to steatohepatitis, liver fibrosis and hepatocellular carcinoma. Thus far, there have been no FDA-approved medications for MAFLD. Bariatric surgery (BS) has been found to improve insulin resistance, steatohepatitis and liver fibrosis but is not recommended for treating MAFLD due to its invasiveness. Recent studies suggest the improved glucose metabolism after BS is a result of, at least partly, alterations to the gut microbiota and its associated metabolites, including short chain fatty acids and bile acids. It makes sense the improved steatohepatitis and fibrosis after BS are also induced by the gut microbiota that involves in host metabolic modulation, for example, through altering bile acids composition. Given that the gut-liver axis is a path that may harbor unexplored mechanisms behind MAFLD, we review current literatures about disentangling the metabolic benefits of MAFLD after BS, with a focus on gut microbiota. Some useful research tools including the rodent BS model, the multiomics approach, and the human microbiota associated (HMA) mice are presented and discussed. We believe, by taking advantage of these modern translational tools, researchers will uncover microbiota related pathways to serve as potential therapeutic targets for treating MAFLD.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Enfermedades Metabólicas/microbiología , Enfermedad del Hígado Graso no Alcohólico/microbiología , Animales , Cirugía Bariátrica , Ácidos y Sales Biliares/metabolismo , Humanos , Hígado/metabolismo , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/cirugía , Ratones , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/cirugía
18.
Hum Exp Toxicol ; 40(4): 622-633, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32924602

RESUMEN

Bacteroides fragilis (BF) plays a critical role in developing and maintaining the mammalian immune system. We previously found that BF colonization could prevent inflammation and tumor formation in a germ-free (GF) colitis-associated colorectal cancer (CAC) mouse model. The role of Toll-like receptor 4 (TLR4) in CAC development has not been clearly elucidated in BF mono-colonized gnotobiotic mice. The wild-type (WT) and TLR4 knockout (T4K) germ-free mice were raised with or without BF colonization for 28 days (GF/WT, GF/T4K, BF/WT, and BF/T4K) and then CAC was induced under azoxymethane (AOM)/dextran sulfate sodium (DSS) administration. The results showed that tumor formation and tumor incidence were significantly inhibited in the BF/WT group compared to those observed in the GF/WT group. However, the tumor prevention effect was not observed in the BF/T4K group unlike in the BF/WT group. Moreover, the CAC histological severity of the BF/WT group was ameliorated, but more severe lesions were found in the GF/WT, GF/T4K, and BF/T4K groups. Immunohistochemistry showed decreased cell proliferation (PCNA, ß-catenin) and inflammatory markers (iNOS) in the BF/WT group compared to those in the BF/T4K group. Taken together, BF mono-colonization of GF mice might prevent CAC via the TLR4 signal pathway.


Asunto(s)
Bacteroides fragilis , Neoplasias Asociadas a Colitis , Colitis , Neoplasias Colorrectales , Receptor Toll-Like 4/genética , Animales , Azoximetano , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/microbiología , Colitis/patología , Neoplasias Asociadas a Colitis/metabolismo , Neoplasias Asociadas a Colitis/microbiología , Neoplasias Asociadas a Colitis/patología , Colon/metabolismo , Colon/microbiología , Colon/patología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Ciclooxigenasa 2/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Vida Libre de Gérmenes , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , beta Catenina/metabolismo
19.
Microbiome ; 8(1): 162, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213511

RESUMEN

The capability of gut microbiota in degrading foods and drugs administered orally can result in diversified efficacies and toxicity interpersonally and cause significant impact on human health. Production of atherogenic trimethylamine N-oxide (TMAO) from carnitine is a gut microbiota-directed pathway and varies widely among individuals. Here, we demonstrated a personalized TMAO formation and carnitine bioavailability from carnitine supplements by differentiating individual TMAO productivities with a recently developed oral carnitine challenge test (OCCT). By exploring gut microbiome in subjects characterized by TMAO producer phenotypes, we identified 39 operational taxonomy units that were highly correlated to TMAO productivity, including Emergencia timonensis, which has been recently discovered to convert γ-butyrobetaine to TMA in vitro. A microbiome-based random forest classifier was therefore constructed to predict the TMAO producer phenotype (AUROC = 0.81) which was then validated with an external cohort (AUROC = 0.80). A novel bacterium called Ihubacter massiliensis was also discovered to be a key microbe for TMA/TMAO production by using an OCCT-based humanized gnotobiotic mice model. Simply combining the presence of E. timonensis and I. massiliensis could account for 43% of high TMAO producers with 97% specificity. Collectively, this human gut microbiota phenotype-directed approach offers potential for developing precision medicine and provides insights into translational research. Video Abstract.


Asunto(s)
Carnitina/farmacología , Metilaminas/metabolismo , Microbiota/efectos de los fármacos , Administración Oral , Adulto , Animales , Carnitina/administración & dosificación , Clostridiales/efectos de los fármacos , Clostridiales/metabolismo , Femenino , Humanos , Masculino , Ratones , Microbiota/genética
20.
J Nutr Biochem ; 79: 108362, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32163832

RESUMEN

Diet-induced obesity is the most widely used animal model for studying nonalcoholic fatty liver disease (NAFLD). However, the physiological effects of a high-fat diet (HFD) are inconsistent between different studies. To elucidate this mystery, mice raised with conventional (CONV), specific pathogen-free (SPF) and gentamicin (G) treatments and fed with standard diet (STD) or HFD were analyzed in terms of their physiology, gut microbiota composition, hepatic steatosis and inflammation. Serum biochemistry showed increased levels of cholesterol and aspartate aminotransferase in the G-STD and CONV-HFD groups, respectively. The CONV-HFD group exhibited more inflammatory foci compared to the SPF-HFD and G-HFD groups. Furthermore, immunohistochemistry staining revealed the infiltration of Kupffer cells in the liver, consistent with increased mRNA levels of MCP-1, CD36 and TLR4. Principal coordinate analysis and the cladogram of LEfSe showed that the distinguished clusters of gut microbiota were dependent on housing conditions. The Rikenellaceae, F16 and Desulfovibrionaceae were strongly correlated with hepatic inflammation. Otherwise, higher NAFLD activity score correlated with altered relative abundances of Bacteroidetes and Firmicutes. In conclusion, gut microbiota varying with housing condition may be pivotal for the host response to HFD.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal , Vivienda para Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Aspartato Aminotransferasas/sangre , Bacteroidetes , Colesterol/sangre , Modelos Animales de Enfermedad , Firmicutes , Inflamación/metabolismo , Macrófagos del Hígado/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/microbiología , Obesidad/metabolismo , Obesidad/patología , Organismos Libres de Patógenos Específicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...