RESUMEN
Infection during the perinatal period can adversely affect brain development, predispose infants to ischemic stroke and have lifelong consequences. We previously demonstrated that diet enriched in n-3 polyunsaturated fatty acids (n-3 PUFA) transforms brain lipid composition in the offspring and protects the neonatal brain from stroke, in part by blunting injurious immune responses. Critical to the interface between the brain and systemic circulation is the vasculature, endothelial cells in particular, that support brain homeostasis and provide a barrier to systemic infection. Here, we examined whether maternal PUFA-enriched diets exert reprograming of endothelial cell signalling in postnatal day 9 mice after modeling aspects of infection using LPS. Transcriptome analysis was performed on microvessels isolated from brains of pups from dams maintained on 3 different maternal diets from gestation day 1: standard, n-3 enriched or n-6 enriched diets. Depending on the diet, in endothelial cells LPS produced distinct regulation of pathways related to immune response, cell cycle, extracellular matrix, and angiogenesis. N-3 PUFA diet enabled higher immune reactivity in brain vasculature, while preventing imbalance of cell cycle regulation and extracellular matrix cascades that accompanied inflammatory response in standard diet. Cytokine analysis revealed a blunted LPS response in blood and brain of offspring from dams on n-3 enriched diet. Analysis of cerebral vasculature in offspring in vivo revealed no differences in vessel density. However, vessel complexity was decreased in response to LPS at 72 h in standard and n-6 diets. Thus, LPS modulates specific transcriptomic changes in brain vessels of offspring rather than major structural vessel characteristics during early life. N-3 PUFA-enriched maternal diet in part prevents an imbalance in homeostatic processes, alters inflammation and ultimately mitigates changes to the complexity of surface vessel networks that result from infection. Importantly, maternal diet may presage offspring neurovascular outcomes later in life.
Asunto(s)
Animales Recién Nacidos , Ácidos Grasos Omega-3 , Transcriptoma , Animales , Ratones , Ácidos Grasos Omega-3/administración & dosificación , Femenino , Embarazo , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Inflamación/metabolismo , Inflamación/patología , Encéfalo/metabolismo , Encéfalo/patología , Endotoxinas/toxicidadRESUMEN
Infection during perinatal period can adversely affect brain development, predispose infants to ischemic stroke and have lifelong consequences. We previously demonstrated that diet enriched in n-3 polyunsaturated fatty acids (PUFA) transforms brain lipid composition and protects from neonatal stroke. Vasculature is a critical interface between blood and brain providing a barrier to systemic infection. Here we examined whether maternal PUFA-enriched diets exert reprograming of endothelial cell signalling in 9-day old mice after endotoxin (LPS)-induced infection. Transcriptome analysis was performed on brain microvessels from pups born to dams maintained on 3 diets: standard, n-3 or n-6 enriched. N-3 diet enabled higher immune reactivity in brain vasculature, while preventing imbalance of cell cycle regulation and extracellular matrix cascades that accompanied inflammatory response in standard diet. LPS response in blood and brain was blunted in n-3 offspring. Cerebral angioarchitecture analysis revealed modified vessel complexity after LPS. Thus, n-3-enriched maternal diet partially prevents imbalance in homeostatic processes and alters inflammation rather than affects brain vascularization during early life. Importantly, maternal diet may presage offspring neurovascular outcomes later in life.
RESUMEN
SUMMARY STATEMENT: Neonatal hypoxia-ischemia reduces nicotinamide adenine dinucleotide (NAD+) and SIRT6 levels in the injured hippocampus.Hippocampal high mobility group box-1 (HMGB1) release is significantly increased after neonatal hypoxia-ischemia.Nicotinamide mononucleotide (NMN) treatment normalizes hippocampal NAD+ and SIRT6 levels, with significant decrease in caspase-3 activity and HMGB1 release.NMN improves early developmental behavior, as well as motor and memory function.
Asunto(s)
Lesiones Encefálicas , Proteína HMGB1 , Sirtuinas , Ratones , Animales , Mononucleótido de Nicotinamida/farmacología , Mononucleótido de Nicotinamida/uso terapéutico , NAD/uso terapéutico , Animales Recién Nacidos , Proteína HMGB1/uso terapéutico , Lesiones Encefálicas/tratamiento farmacológico , Isquemia , Hipoxia , Sirtuinas/uso terapéuticoRESUMEN
Staphylococcus (S.) epidermidis is the most common nosocomial coagulase-negative staphylococci infection in preterm infants. Clinical signs of infection are often unspecific and novel markers to complement diagnosis are needed. We investigated proteomic alterations in mouse brain after S. epidermidis infection and in preterm infant blood. We identified lipocalin-2 (LCN2) as a crucial protein associated with cerebrovascular changes and astrocyte reactivity in mice. We further proved that LCN2 protein expression was associated with endothelial cells but not astrocyte reactivity. By combining network analysis and differential expression approaches, we identified LCN2 linked to blood C-reactive protein levels in preterm infants born <28 weeks of gestation. Blood LCN2 levels were associated with similar alterations of cytokines and chemokines in both infected mice and human preterm infants with increased levels of C-reactive protein. This experimental and clinical study suggests that LCN2 may be a marker of preterm infection/inflammation associated with cerebrovascular changes and neuroinflammation.
RESUMEN
Staphylococcus epidermidis (S. epidermidis) is the most common nosocomial pathogen in preterm infants and associated with increased risk of cognitive delay, however, underlying mechanisms are unknown. We employed morphological, transcriptomic and physiological methods to extensively characterize microglia in the immature hippocampus following S. epidermidis infection. 3D morphological analysis revealed activation of microglia after S. epidermidis. Differential expression combined with network analysis identified NOD-receptor signaling and trans-endothelial leukocyte trafficking as major mechanisms in microglia. In support, active caspase-1 was increased in the hippocampus and using the LysM-eGFP knock-in transgenic mouse, we demonstrate infiltration of leukocytes to the brain together with disruption of the blood-brain barrier. Our findings identify activation of microglia inflammasome as a major mechanism underlying neuroinflammation following infection. The results demonstrate that neonatal S. epidermidis infection share analogies with S. aureus and neurological diseases, suggesting a previously unrecognized important role in neurodevelopmental disorders in preterm born children.
Asunto(s)
Infecciones Estafilocócicas , Transcriptoma , Recién Nacido , Animales , Humanos , Ratones , Staphylococcus epidermidis/genética , Microglía/metabolismo , Staphylococcus aureus/fisiología , Ratones Endogámicos NOD , Recien Nacido Prematuro , Infecciones Estafilocócicas/metabolismo , Hipocampo/metabolismoRESUMEN
The neuro-gliovascular unit is a crucial structure for providing a balanced well-functioning environment for neurons and their synapses. Activation of the immune system during the developmental period is believed to affect the gliovascular unit, which may trigger neurodevelopmental and neurological/neuropsychiatric diseases. In this study, we hypothesized that vulnerability of the male brain to a neonatal insult was conditioned by sex-dependent differences in the impairment of the hippocampal gliovascular unit. Male and female C57BL/6J pups received lipopolysaccharide (LPS) (1 mg/kg) or saline on postnatal day (P) 5. Brains were collected at P12 and morphological quantifications of hippocampal fibrillary glial acid protein (GFAP+) astrocytes and ionized calcium-binding adaptor molecule 1 protein (Iba1+) microglia were performed by using 3-D image analysis together with measuring the length of CD31+ and aquaporin-4 (AQP4+) vessels. We found a significant increase in the length of CD31+ capillaries in the male LPS group compared to the saline group; however, coverage of capillaries by astrocytic end-feet (AQP4+) was significantly reduced. In contrast, there was a significant increase in AQP4+ capillary length in female pups 1 week after LPS injection. GFAP+ astrocytes via morphological changes in the hippocampus showed significant enhancement in the activity 1 week following LPS injection in male mice. We propose that neonatal inflammation could induce susceptibility to neurodevelopmental disorders through modification of hippocampal gliovascular interface in a sex-dependent manner.
Asunto(s)
Astrocitos , Lipopolisacáridos , Animales , Astrocitos/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
BACKGROUND AND PURPOSE: Autism spectrum disorders (ASD) are heterogeneous neurodevelopmental disorders with considerably increased risk in male infants born preterm and with neonatal infection. Here, we investigated the role of postnatal immune activation on hippocampal synaptopathology by targeting Reelin+ cells in mice with ASD-like behaviours. EXPERIMENTAL APPROACH: C57/Bl6 mouse pups of both sexes received lipopolysaccharide (LPS, 1 mg·kg-1 ) on postnatal day (P) 5. At P45, animal behaviour was examined by marble burying and sociability test, followed by ex vivo brain MRI diffusion kurtosis imaging (DKI). Hippocampal synaptogenesis, number and morphology of Reelin+ cells, and mRNA expression of trans-synaptic genes, including neurexin-3, neuroligin-1, and cell-adhesion molecule nectin-1, were analysed at P12 and P45. KEY RESULTS: Social withdrawal and increased stereotypic activities in males were related to increased mean diffusivity on MRI-DKI and overgrowth in hippocampus together with retention of long-thin immature synapses on apical dendrites, decreased volume and number of Reelin+ cells as well as reduced expression of trans-synaptic and cell-adhesion molecules. CONCLUSION AND IMPLICATIONS: The study provides new insights into sex-dependent mechanisms that may underlie ASD-like behaviour in males following postnatal immune activation. We identify GABAergic interneurons as core components of dysmaturation of excitatory synapses in the hippocampus following postnatal infection and provide cellular and molecular substrates for the MRI findings with translational value.
Asunto(s)
Trastorno Autístico , Serina Endopeptidasas , Animales , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Hipocampo/metabolismo , Humanos , Lipopolisacáridos , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteína Reelina , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismoRESUMEN
The fetus is strongly dependent on nutrients from the mother, including polyunsaturated fatty acids (PUFA). In adult animals, n-3 PUFA ameliorates stroke-mediated brain injury, but the modulatory effects of different PUFA content in maternal diet on focal arterial stroke in neonates are unknown. This study explored effects of maternal n-3 or n-6 enriched PUFA diets on neonatal stroke outcomes. Pregnant mice were assigned three isocaloric diets until offspring reached postnatal day (P) 10-13: standard, long-chain n-3 PUFA (n-3) or n-6 PUFA (n-6) enriched. Fatty acid profiles in plasma and brain of mothers and pups were determined by gas chromatography-mass spectrometry and cytokines/chemokines by multiplex protein analysis. Transient middle cerebral artery occlusion (tMCAO) was induced in P9-10 pups and cytokine and chemokine accumulation, caspase-3 and calpain-dependent spectrin cleavage and brain infarct volume were analyzed. The n-3 diet uniquely altered brain lipid profile in naïve pups. In contrast, cytokine and chemokine levels did not differ between n-3 and n-6 diet in naïve pups. tMCAO triggered accumulation of inflammatory cytokines and caspase-3-dependent and -independent cell death in ischemic-reperfused regions in pups regardless of diet, but magnitude of neuroinflammation and caspase-3 activation were attenuated in pups on n-3 diet, leading to protection against neonatal stroke. In conclusion, maternal/postnatal n-3 enriched diet markedly rearranges neonatal brain lipid composition and modulates the response to ischemia. While standard diet is sufficient to maintain low levels of inflammatory cytokines and chemokines under physiological conditions, n-3 PUFA enriched diet, but not standard diet, attenuates increases of inflammatory cytokines and chemokines in ischemic-reperfused regions and protects from neonatal stroke.
Asunto(s)
Ácidos Grasos Omega-3 , Accidente Cerebrovascular , Animales , Encéfalo/metabolismo , Caspasa 3/metabolismo , Quimiocinas , Citocinas/metabolismo , Dieta , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Insaturados/metabolismo , Femenino , Ratones , Embarazo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/prevención & controlRESUMEN
Inflammation and neonatal hypoxia-ischemia (HI) are important etiological factors of perinatal brain injury. However, underlying mechanisms remain unclear. Sirtuins are a family of nicotinamide adenine dinucleotide (NAD)+-dependent histone deacetylases. Sirtuin-6 is thought to regulate inflammatory and oxidative pathways, such as the extracellular release of the alarmin high mobility group box-1 (HMGB1). The expression and role of sirtuin-6 in neonatal brain injury are unknown. In a well-established model of neonatal brain injury, which encompasses inflammation (lipopolysaccharide, LPS) and hypoxia-ischemia (LPS+HI), we investigated the protein expression of sirtuin-6 and HMGB1, as well as thiol oxidation. Furthermore, we assessed the effect of the antioxidant N-acetyl cysteine (NAC) on sirtuin-6 expression, nuclear to cytoplasmic translocation, and release of HMGB1 in the brain and blood thiol oxidation after LPS+HI. We demonstrate reduced expression of sirtuin-6 and increased release of HMGB1 in injured hippocampus after LPS+HI. NAC treatment restored sirtuin-6 protein levels, which was associated with reduced extracellular HMGB1 release and reduced thiol oxidation in the blood. The study suggests that early reduction in sirtuin-6 is associated with HMGB1 release, which may contribute to neonatal brain injury, and that antioxidant treatment is beneficial for the alleviation of these injurious mechanisms.
RESUMEN
Stroke is among the top ten causes of death in children but has received disproportionally little attention. Cerebral arteriopathies account for up to 80% of childhood arterial ischemic stroke (CAIS) cases and are strongly predictive of CAIS recurrence and poorer outcomes. The underlying mechanisms of sensitization of neurovasculature by viral infection are undefined. In the first age-appropriate model for childhood arteriopathy-by administration of viral mimetic TLR3-agonist Polyinosinic:polycytidylic acid (Poly-IC) in juvenile mice-we identified a key role of the TLR3-neutrophil axis in disrupting the structural-functional integrity of the blood-brain barrier (BBB) and distorting the developing neurovascular architecture and vascular networks. First, using an array of in-vivo/post-vivo vascular imaging, genetic, enzymatic and pharmacological approaches, we report marked Poly-IC-mediated extravascular leakage of albumin (66kDa) and of a small molecule DiI (â¼934Da) and disrupted tight junctions. Poly-IC also enhanced the neuroinflammatory milieu, promoted neutrophil recruitment, profoundly upregulated neutrophil elastase (NE), and induced neutrophil extracellular trap formation (NETosis). Finally, we show that functional BBB disturbances, NETosis and neuroinflammation are markedly attenuated by pharmacological inhibition of NE (Sivelestat). Altogether, these data reveal NE/NETosis as a novel therapeutic target for viral-induced cerebral arteriopathies in children.
Asunto(s)
Arterias Cerebrales/metabolismo , Trampas Extracelulares/metabolismo , Elastasa de Leucocito , Poli I-C/efectos adversos , Transducción de Señal/efectos de los fármacos , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/metabolismo , Arterias Cerebrales/patología , Niño , Trampas Extracelulares/genética , Humanos , Elastasa de Leucocito/genética , Elastasa de Leucocito/metabolismo , Ratones , Ratones Transgénicos , Poli I-C/farmacología , Transducción de Señal/genética , Accidente Cerebrovascular/inducido químicamente , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Uniones Estrechas/genética , Uniones Estrechas/metabolismo , Receptor Toll-Like 3/agonistas , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismoRESUMEN
The LIM homeodomain transcription factor ISL1 is essential for the different aspects of neuronal development and maintenance. In order to study the role of ISL1 in the auditory system, we generated a transgenic mouse (Tg) expressing Isl1 under the Pax2 promoter control. We previously reported a progressive age-related decline in hearing and abnormalities in the inner ear, medial olivocochlear system, and auditory midbrain of these Tg mice. In this study, we investigated how Isl1 overexpression affects sound processing by the neurons of the inferior colliculus (IC). We recorded extracellular neuronal activity and analyzed the responses of IC neurons to broadband noise, clicks, pure tones, two-tone stimulation and frequency-modulated sounds. We found that Tg animals showed a higher inhibition as displayed by two-tone stimulation; they exhibited a wider dynamic range, lower spontaneous firing rate, longer first spike latency and, in the processing of frequency modulated sounds, showed a prevalence of high-frequency inhibition. Functional changes were accompanied by a decreased number of calretinin and parvalbumin positive neurons, and an increased expression of vesicular GABA/glycine transporter and calbindin in the IC of Tg mice, compared to wild type animals. The results further characterize abnormal sound processing in the IC of Tg mice and demonstrate that major changes occur on the side of inhibition.
Asunto(s)
Percepción Auditiva/genética , Colículos Inferiores/fisiología , Proteínas con Homeodominio LIM/genética , Factores de Transcripción/genética , Animales , Percepción Auditiva/fisiología , Umbral Auditivo/fisiología , Encéfalo/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Femenino , Expresión Génica/genética , Audición , Humanos , Colículos Inferiores/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas/fisiología , Factor de Transcripción PAX2/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismoRESUMEN
BACKGROUND: The immune system of human and mouse neonates is relatively immature. However, innate lymphoid cells (ILCs), commonly divided into the subsets ILC1, ILC2, and ILC3, are already present in the placenta and other fetal compartments and exhibit higher activity than what is seen in adulthood. Recent reports have suggested the potential role of ILCs, especially ILC2s, in spontaneous preterm labor, which is associated with brain damage and subsequent long-term neurodevelopmental deficits. Therefore, we hypothesized that ILCs, and especially ILC2s, play a role in preterm brain injury. METHODS: C57Bl/6J mice at postnatal day 6 were subjected to hypoxia-ischemia (HI) insult induced by left carotid artery ligation and subsequent exposure to 10% oxygen in nitrogen. The presence of ILCs and ILC2s in the brain was examined at different time points after HI. The contribution of ILC2s to HI-induced preterm brain damage was explored using a conditionally targeted ILC2-deficient mouse strain (Rorα fl/fl IL7r Cre ), and gray and white-matter injury were evaluated at 7 days post-HI. The inflammatory response in the injured brain was assessed using immunoassays and immunochemistry staining. RESULTS: Significant increases in ILCs and ILC2s were observed at 24 h, 3 days, and 7 days post-HI in the injured brain hemisphere compared with the uninjured hemisphere in wild-type mice. ILC2s in the brain were predominantly located in the meninges of the injured ipsilateral hemispheres after HI but not in the brain parenchyma. Overall, we did not observe changes in cytokine/chemokine levels in the brains of Rorα fl/fl IL7r Cre mice compared with wild type animals apart from IL-13. Gray and white-matter tissue loss in the brain was not affected after HI in Rorα fl/fl IL7r Cre mice. Correspondingly, we did not find any differences in reactive microglia and astrocyte numbers in the brain in Rorα fl/fl IL7r Cre mice compared with wild-type mice following HI insult. CONCLUSION: After HI, ILCs and ILC2s accumulate in the injured brain hemisphere. However, ILC2s do not contribute to the development of brain damage in this mouse model of preterm brain injury.
RESUMEN
BACKGROUND: Depression is a common complication of stroke and increases the risk of mortality and disability. Pre-stroke depression is a possible risk factor for stroke and has also been linked to adverse outcomes. The underlying mechanisms linking depression and stroke remain unclear. Preclinical models may provide novel insights, but models reflecting both conditions are lacking. METHODS: In this study, we investigated the effects of a 45-min transient middle cerebral artery occlusion (MCAo) on infarct size in male adult Flinders Sensitive Line rats, a genetic animal model of depression, and their control strains Flinders Resistant Line and Sprague-Dawley rats. Infarct size was assessed by tetrazolium chloride (TTC) and microtubule-associated protein 2 (MAP2) staining after 48 h of reperfusion. Angiograms of the vascular structure of naïve animals were produced with a µ-CT scanner. RESULTS: Both Flinders strains had significantly smaller infarcts following MCAo compared to Sprague-Dawley rats. This effect does not appear to be due to changes in cerebrovascular architecture, as indicated by an initial exploration of vascular organization using angiograms, or body temperature regulation. CONCLUSIONS: Our study suggests that the rat strain does not influence infarct volumes following MCAo.
Asunto(s)
Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/fisiopatología , Infarto/metabolismo , Animales , Isquemia Encefálica/complicaciones , Depresión/metabolismo , Infarto/fisiopatología , Infarto de la Arteria Cerebral Media/metabolismo , Ataque Isquémico Transitorio/complicaciones , Masculino , Proteínas Asociadas a Microtúbulos/análisis , Arteria Cerebral Media/patología , Ratas , Ratas Endogámicas , Ratas Sprague-Dawley , Reperfusión/métodos , Daño por Reperfusión/complicaciones , Accidente Cerebrovascular/complicaciones , Sales de Tetrazolio/análisisRESUMEN
Individuals born preterm have higher rates of neurodevelopmental disorders such as schizophrenia, autistic spectrum, and attention deficit/hyperactivity disorders. These conditions are often sexually dimorphic and with different developmental trajectories. The etiology is likely multifactorial, however, infections both during pregnancy and in childhood have emerged as important risk factors. The association between sex- and age-dependent vulnerability to neuropsychiatric disorders has been suggested to relate to immune activation in the brain, including complex interactions between sex hormones, brain transcriptome, activation of glia cells, and cytokine production. Here, we will review sex-dependent effects on brain development, including glia cells, both under normal physiological conditions and following perinatal inflammation. Emphasis will be given to sex-dependent effects on brain regions which play a role in neuropsychiatric disorders and inflammatory reactions that may underlie early-life programming of neurobehavioral disturbances later in life.
Asunto(s)
Encéfalo/crecimiento & desarrollo , Inflamación/fisiopatología , Trastornos del Neurodesarrollo/fisiopatología , Neuroglía/patología , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno del Espectro Autista/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Humanos , Inflamación/diagnóstico por imagen , Nacimiento Prematuro/fisiopatología , Esquizofrenia/fisiopatología , Caracteres SexualesRESUMEN
Hearing depends on extracting frequency, intensity, and temporal properties from sound to generate an auditory map for acoustical signal processing. How physiology intersects with molecular specification to fine tune the developing properties of the auditory system that enable these aspects remains unclear. We made a novel conditional deletion model that eliminates the transcription factor NEUROD1 exclusively in the ear. These mice (both sexes) develop a truncated frequency range with no neuroanatomically recognizable mapping of spiral ganglion neurons onto distinct locations in the cochlea nor a cochleotopic map presenting topographically discrete projections to the cochlear nuclei. The disorganized primary cochleotopic map alters tuning properties of the inferior colliculus units, which display abnormal frequency, intensity, and temporal sound coding. At the behavioral level, animals show alterations in the acoustic startle response, consistent with altered neuroanatomical and physiological properties. We demonstrate that absence of the primary afferent topology during embryonic development leads to dysfunctional tonotopy of the auditory system. Such effects have never been investigated in other sensory systems because of the lack of comparable single gene mutation models.SIGNIFICANCE STATEMENT All sensory systems form a topographical map of neuronal projections from peripheral sensory organs to the brain. Neuronal projections in the auditory pathway are cochleotopically organized, providing a tonotopic map of sound frequencies. Primary sensory maps typically arise by molecular cues, requiring physiological refinements. Past work has demonstrated physiologic plasticity in many senses without ever molecularly undoing the specific mapping of an entire primary sensory projection. We genetically manipulated primary auditory neurons to generate a scrambled cochleotopic projection. Eliminating tonotopic representation to auditory nuclei demonstrates the inability of physiological processes to restore a tonotopic presentation of sound in the midbrain. Our data provide the first insights into the limits of physiology-mediated brainstem plasticity during the development of the auditory system.
Asunto(s)
Percepción Auditiva/genética , Percepción Auditiva/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Mesencéfalo/fisiología , Percepción de la Altura Tonal/fisiología , Animales , Conducta Animal/fisiología , Mapeo Encefálico , Núcleo Coclear/anatomía & histología , Núcleo Coclear/fisiología , Femenino , Audición/fisiología , Colículos Inferiores/anatomía & histología , Colículos Inferiores/fisiología , Masculino , Mesencéfalo/embriología , Ratones , Ratones Noqueados , Embarazo , Reflejo de Sobresalto/genética , Reflejo de Sobresalto/fisiología , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/fisiología , Vestíbulo del Laberinto/anatomía & histología , Vestíbulo del Laberinto/fisiologíaRESUMEN
The brain is a plastic organ where both the intrinsic CNS milieu and extrinsic cues play important roles in shaping and wiring neural connections. The perinatal period constitutes a critical time in central nervous system development with extensive refinement of neural connections, which are highly sensitive to fetal and neonatal compromise, such as inflammatory challenges. Emerging evidence suggests that inflammatory cells in the brain such as microglia and astrocytes are pivotal in regulating synaptic structure and function. In this article, we will review the role of glia cells in synaptic physiology and pathophysiology, including microglia-mediated elimination of synapses. We propose that activation of the immune system dynamically affects synaptic organization and function in the developing brain. We will discuss the role of neuroinflammation in altered synaptic plasticity following perinatal inflammatory challenges and potential implications for neurodevelopmental and neurodegenerative disorders.
RESUMEN
Fischer 344 (F344) rats represent a strain that is frequently used as a model for fast aging. In this study, we systematically compare the hearing function during aging in male and female F344 rats, by recording auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). In addition to this, the functional parameters are correlated with the cochlear histology. The parameters of the hearing function were not different in the young (3-month-old) male and female F344 rats; the gender differences occurred only in adult and aged animals. In 8-24-month-old males, the ABR thresholds were higher and the ABR amplitudes were smaller than those measured in females of the same age. There were no gender differences in the neural adaptation tested by recording ABRs, elicited by a series of clicks with varying inter-click interval (ICI). Amplitudes of DPOAEs in both the males and females decreased with age, but in the males, the decrease of DPOAE amplitudes was faster. In males older than 20 months, the DPOAEs were practically absent, whereas in 20-24-month-old females, the DPOAEs were still measurable. There were no gender differences in the number of surviving outer hair cells (OHC) and the number of inner hair cell ribbon synapses in aged animals. The main difference was found in the stria vascularis (SV). Whereas the SV was well preserved in females up to the age of 24 months, in most of the age-matched males the SV was evidently deteriorated. The results demonstrate more pronounced age-related changes in the cochlear morphology, hearing thresholds, ABR amplitudes and DPOAE amplitudes in F344 males compared with females.
RESUMEN
The programming of cell fate by transcription factors requires precise regulation of their time and level of expression. The LIM-homeodomain transcription factor Islet1 (Isl1) is involved in cell-fate specification of motor neurons, and it may play a similar role in the inner ear. In order to study its role in the regulation of vestibulo-motor development, we investigated a transgenic mouse expressing Isl1 under the Pax2 promoter control (Tg +/- ). The transgenic mice show altered level, time, and place of expression of Isl1 but are viable. However, Tg +/- mice exhibit hyperactivity, including circling behavior, and progressive age-related decline in hearing, which has been reported previously. Here, we describe the molecular and morphological changes in the cerebellum and vestibular system that may cause the hyperactivity of Tg +/- mice. The transgene altered the formation of folia in the cerebellum, the distribution of calretinin labeled unipolar brush cells, and reduced the size of the cerebellum, inferior colliculus, and saccule. Age-related progressive reduction of calbindin expression was detected in Purkinje cells in the transgenic cerebella. The hyperactivity of Tg +/- mice is reduced upon the administration of picrotoxin, a non-competitive channel blocker for the γ-aminobutyric acid (GABA) receptor chloride channels. This suggests that the overexpression of Isl1 significantly affects the functions of GABAergic neurons. We demonstrate that the overexpression of Isl1 affects the development and function of the cerebello-vestibular system, resulting in hyperactivity.
Asunto(s)
Cerebelo/metabolismo , Cerebelo/patología , Hipercinesia/metabolismo , Hipercinesia/patología , Proteínas con Homeodominio LIM/biosíntesis , Factor de Transcripción PAX2/biosíntesis , Factores de Transcripción/biosíntesis , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Vestíbulo del Laberinto/metabolismo , Vestíbulo del Laberinto/patologíaRESUMEN
The role of Sox2 in neurosensory development is not yet fully understood. Using mice with conditional Islet1-cre mediated deletion of Sox2, we explored the function of Sox2 in neurosensory development in a model with limited cell type diversification, the inner ear. In Sox2 conditional mutants, neurons initially appear to form normally, whereas late- differentiating neurons of the cochlear apex never form. Variable numbers of hair cells differentiate in the utricle, saccule, and cochlear base but sensory epithelium formation is completely absent in the apex and all three cristae of the semicircular canal ampullae. Hair cells differentiate only in sensory epithelia known or proposed to have a lineage relationship of neurons and hair cells. All initially formed neurons lacking hair cell targets die by apoptosis days after they project toward non-existing epithelia. Therefore, late neuronal development depends directly on Sox2 for differentiation and on the survival of hair cells, possibly derived from common neurosensory precursors.
Asunto(s)
Células Ciliadas Auditivas/metabolismo , Neurogénesis/fisiología , Factores de Transcripción SOXB1/metabolismo , Sáculo y Utrículo/embriología , Animales , Eliminación de Gen , Células Ciliadas Auditivas/citología , Ratones , Ratones Transgénicos , Factores de Transcripción SOXB1/genética , Sáculo y Utrículo/citologíaRESUMEN
Canal wall down mastoidectomy is one of the most effective treatments for cholesteatoma. However, it results in anatomical changes in the external and middle ear with a negative impact on the patient's quality of life. To provide complete closure of the mastoid cavity and normalize the anatomy of the middle and external ear, we used human multipotent mesenchymal stromal cells (hMSCs), GMP grade, in a guinea pig model. A method for preparing a biomaterial composed of hMSCs, hydroxyapatite, and tissue glue was developed. Animals from the treated group were implanted with biomaterial composed of hydroxyapatite and hMSCs, while animals in the control group received hydroxyapatite alone. When compared to controls, the group implanted with hMSCs showed a significantly higher ratio of new bone formation (p = 0.00174), as well as a significantly higher volume percentage of new immature bone (p = 0.00166). Our results proved a beneficial effect of hMSCs on temporal bone formation and provided a promising tool to improve the quality of life of patients after canal wall down mastoidectomy by hMSC implantation.