Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Math Biol ; 76(1-2): 1-35, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28509259

RESUMEN

We study stochastic evolutionary game dynamics in a population of finite size. Individuals in the population are divided into two dynamically evolving groups. The structure of the population is formally described by a Wright-Fisher type Markov chain with a frequency dependent fitness. In a strong selection regime that favors one of the two groups, we obtain qualitatively matching lower and upper bounds for the fixation probability of the advantageous population. In the infinite population limit we obtain an exact result showing that a single advantageous mutant can invade an infinite population with a positive probability. We also give asymptotically sharp bounds for the fixation time distribution.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Biología Computacional , Teoría del Juego , Genética de Población , Cadenas de Markov , Conceptos Matemáticos , Modelos Genéticos , Mutación , Dinámica Poblacional/estadística & datos numéricos , Probabilidad , Selección Genética , Procesos Estocásticos
2.
J Mol Evol ; 70(2): 149-66, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20091301

RESUMEN

Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes.


Asunto(s)
Evolución Molecular , Genoma de Plastidios/genética , Poaceae/genética , Typhaceae/genética , Genoma de Planta , Genómica , Modelos Genéticos , Filogenia , Proteínas de Plantas/genética , Homología de Secuencia de Ácido Nucleico
3.
Proc Natl Acad Sci U S A ; 104(49): 19369-74, 2007 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-18048330

RESUMEN

Angiosperms are the largest and most successful clade of land plants with >250,000 species distributed in nearly every terrestrial habitat. Many phylogenetic studies have been based on DNA sequences of one to several genes, but, despite decades of intensive efforts, relationships among early diverging lineages and several of the major clades remain either incompletely resolved or weakly supported. We performed phylogenetic analyses of 81 plastid genes in 64 sequenced genomes, including 13 new genomes, to estimate relationships among the major angiosperm clades, and the resulting trees are used to examine the evolution of gene and intron content. Phylogenetic trees from multiple methods, including model-based approaches, provide strong support for the position of Amborella as the earliest diverging lineage of flowering plants, followed by Nymphaeales and Austrobaileyales. The plastid genome trees also provide strong support for a sister relationship between eudicots and monocots, and this group is sister to a clade that includes Chloranthales and magnoliids. Resolution of relationships among the major clades of angiosperms provides the necessary framework for addressing numerous evolutionary questions regarding the rapid diversification of angiosperms. Gene and intron content are highly conserved among the early diverging angiosperms and basal eudicots, but 62 independent gene and intron losses are limited to the more derived monocot and eudicot clades. Moreover, a lineage-specific correlation was detected between rates of nucleotide substitutions, indels, and genomic rearrangements.


Asunto(s)
Evolución Molecular , Genes de Plantas , Genoma de Plastidios/genética , Magnoliopsida/clasificación , Variación Genética , Magnoliopsida/genética , Filogenia
4.
BMC Genomics ; 8: 174, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17573971

RESUMEN

BACKGROUND: The number of completely sequenced plastid genomes available is growing rapidly. This array of sequences presents new opportunities to perform comparative analyses. In comparative studies, it is often useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the genomes reported here: Nuphar advena (from a basal-most lineage) and Ranunculus macranthus (a basal eudicot). We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages) to evaluate features such as the status of ycf15 and ycf68 as protein coding genes, the distribution of simple sequence repeats (SSRs) and longer dispersed repeats (SDR), and patterns of nucleotide composition. RESULTS: The Nuphar [GenBank:NC_008788] and Ranunculus [GenBank:NC_008796] plastid genomes share characteristics of gene content and organization with many other chloroplast genomes. Like other plastid genomes, these genomes are A+T-rich, except for rRNA and tRNA genes. Detailed comparisons of Nuphar with Nymphaea, another Nymphaeaceae, show that more than two-thirds of these genomes exhibit at least 95% sequence identity and that most SSRs are shared. In broader comparisons, SSRs vary among genomes in terms of abundance and length and most contain repeat motifs based on A and T nucleotides. CONCLUSION: SSR and SDR abundance varies by genome and, for SSRs, is proportional to genome size. Long SDRs are rare in the genomes assessed. SSRs occur less frequently than predicted and, although the majority of the repeat motifs do include A and T nucleotides, the A+T bias in SSRs is less than that predicted from the underlying genomic nucleotide composition. In codon usage third positions show an A+T bias, however variation in codon usage does not correlate with differences in A+T-richness. Thus, although plastome nucleotide composition shows "A+T richness", an A+T bias is not apparent upon more in-depth analysis, at least in these aspects. The pattern of evolution in the sequences identified as ycf15 and ycf68 is not consistent with them being protein-coding genes. In fact, these regions show no evidence of sequence conservation beyond what is normal for non-coding regions of the IR.


Asunto(s)
Cloroplastos/genética , Genes de Plantas , Genoma de Planta , Genómica/métodos , Nuphar/genética , Ranunculus/genética , Secuencias de Aminoácidos , Secuencia de Bases , Mapeo Cromosómico , Biología Computacional , Evolución Molecular , Genoma , Modelos Genéticos , Datos de Secuencia Molecular , Especificidad de la Especie
5.
Mol Biol Evol ; 24(5): 1161-80, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17329229

RESUMEN

The chloroplast (cp) DNA sequence of Jasminum nudiflorum (Oleaceae-Jasmineae) is completed and compared with the large single-copy region sequences from 6 related species. The cp genomes of the tribe Jasmineae (Jasminum and Menodora) show several distinctive rearrangements, including inversions, gene duplications, insertions, inverted repeat expansions, and gene and intron losses. The ycf4-psaI region in Jasminum section Primulina was relocated as a result of 2 overlapping inversions of 21,169 and 18,414 bp. The 1st, larger inversion is shared by all members of the Jasmineae indicating that it occurred in the common ancestor of the tribe. Similar rearrangements were also identified in the cp genome of Menodora. In this case, 2 fragments including ycf4 and rps4-trnS-ycf3 genes were moved by 2 additional inversions of 14 and 59 kb that are unique to Menodora. Other rearrangements in the Oleaceae are confined to certain regions of the Jasminum and Menodora cp genomes, including the presence of highly repeated sequences and duplications of coding and noncoding sequences that are inserted into clpP and between rbcL and psaI. These insertions are correlated with the loss of 2 introns in clpP and a serial loss of segments of accD. The loss of the accD gene and clpP introns in both the monocot family Poaceae and the eudicot family Oleaceae are clearly independent evolutionary events. However, their genome organization is surprisingly similar despite the distant relationship of these 2 angiosperm families.


Asunto(s)
Cloroplastos/genética , Evolución Molecular , Reordenamiento Génico , Genoma de Planta , Jasminum/genética , Oleaceae/genética , Secuencia de Bases , ADN de Cloroplastos , ADN de Plantas , Duplicación de Gen , Intrones , Datos de Secuencia Molecular , Oleaceae/clasificación , Alineación de Secuencia , Eliminación de Secuencia
6.
Mol Biol Evol ; 23(11): 2175-90, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16916942

RESUMEN

The chloroplast genome of Pelargonium x hortorum has been completely sequenced. It maps as a circular molecule of 217,942 bp and is both the largest and most rearranged land plant chloroplast genome yet sequenced. It features 2 copies of a greatly expanded inverted repeat (IR) of 75,741 bp each and, consequently, diminished single-copy regions of 59,710 and 6,750 bp. Despite the increase in size and complexity of the genome, the gene content is similar to that of other angiosperms, with the exceptions of a large number of pseudogenes, the recognition of 2 open reading frames (ORF56 and ORF42) in the trnA intron with similarities to previously identified mitochondrial products (ACRS and pvs-trnA), the losses of accD and trnT-ggu and, in particular, the presence of a highly divergent set of rpoA-like ORFs rather than a single, easily recognized gene for rpoA. The 3-fold expansion of the IR (relative to most angiosperms) accounts for most of the size increase of the genome, but an additional 10% of the size increase is related to the large number of repeats found. The Pelargonium genome contains 35 times as many 31 bp or larger repeats than the unrearranged genome of Spinacia. Most of these repeats occur near the rearrangement hotspots, and 2 different associations of repeats are localized in these regions. These associations are characterized by full or partial duplications of several genes, most of which appear to be nonfunctional copies or pseudogenes. These duplications may also be linked to the disruption of at least 1 but possibly 2 or 3 operons. We propose simple models that account for the major rearrangements with a minimum of 8 IR boundary changes and 12 inversions in addition to several insertions of duplicated sequence.


Asunto(s)
Cloroplastos/genética , Evolución Molecular , Reordenamiento Génico , Genoma de Planta , Pelargonium/genética , Mapeo Cromosómico , Orden Génico , Modelos Genéticos , Datos de Secuencia Molecular , Polimorfismo Genético , Secuencias Repetitivas de Ácidos Nucleicos
7.
Mol Biol Evol ; 22(10): 1948-63, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15944438

RESUMEN

While there has been strong support for Amborella and Nymphaeales (water lilies) as branching from basal-most nodes in the angiosperm phylogeny, this hypothesis has recently been challenged by phylogenetic analyses of 61 protein-coding genes extracted from the chloroplast genome sequences of Amborella, Nymphaea, and 12 other available land plant chloroplast genomes. These character-rich analyses placed the monocots, represented by three grasses (Poaceae), as sister to all other extant angiosperm lineages. We have extracted protein-coding regions from draft sequences for six additional chloroplast genomes to test whether this surprising result could be an artifact of long-branch attraction due to limited taxon sampling. The added taxa include three monocots (Acorus, Yucca, and Typha), a water lily (Nuphar), a ranunculid (Ranunculus), and a gymnosperm (Ginkgo). Phylogenetic analyses of the expanded DNA and protein data sets together with microstructural characters (indels) provided unambiguous support for Amborella and the Nymphaeales as branching from the basal-most nodes in the angiosperm phylogeny. However, their relative positions proved to be dependent on the method of analysis, with parsimony favoring Amborella as sister to all other angiosperms and maximum likelihood (ML) and neighbor-joining methods favoring an Amborella + Nymphaeales clade as sister. The ML phylogeny supported the later hypothesis, but the likelihood for the former hypothesis was not significantly different. Parametric bootstrap analysis, single-gene phylogenies, estimated divergence dates, and conflicting indel characters all help to illuminate the nature of the conflict in resolution of the most basal nodes in the angiosperm phylogeny. Molecular dating analyses provided median age estimates of 161 MYA for the most recent common ancestor (MRCA) of all extant angiosperms and 145 MYA for the MRCA of monocots, magnoliids, and eudicots. Whereas long sequences reduce variance in branch lengths and molecular dating estimates, the impact of improved taxon sampling on the rooting of the angiosperm phylogeny together with the results of parametric bootstrap analyses demonstrate how long-branch attraction might mislead genome-scale phylogenetic analyses.


Asunto(s)
Cloroplastos/genética , Magnoliopsida/genética , Filogenia , Codón/genética , Elementos Transponibles de ADN , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Evolución Molecular , Genoma de Planta , Magnoliopsida/clasificación , Eliminación de Secuencia
8.
Methods Enzymol ; 395: 348-84, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15865976

RESUMEN

During the past decade, there has been a rapid increase in our understanding of plastid genome organization and evolution due to the availability of many new completely sequenced genomes. There are 45 complete genomes published and ongoing projects are likely to increase this sampling to nearly 200 genomes during the next 5 years. Several groups of researchers including ours have been developing new techniques for gathering and analyzing entire plastid genome sequences and details of these developments are summarized in this chapter. The most important developments that enhance our ability to generate whole chloroplast genome sequences involve the generation of pure fractions of chloroplast genomes by whole genome amplification using rolling circle amplification, cloning genomes into Fosmid or bacterial artificial chromosome (BAC) vectors, and the development of an organellar annotation program (Dual Organellar GenoMe Annotator [DOGMA]). In addition to providing details of these methods, we provide an overview of methods for analyzing complete plastid genome sequences for repeats and gene content, as well as approaches for using gene order and sequence data for phylogeny reconstruction. This explosive increase in the number of sequenced plastid genomes and improved computational tools will provide many insights into the evolution of these genomes and much new data for assessing relationships at deep nodes in plants and other photosynthetic organisms.


Asunto(s)
Cloroplastos/genética , Genómica/métodos , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular/métodos , ADN de Cloroplastos/genética , ADN de Cloroplastos/aislamiento & purificación , Bases de Datos Genéticas , Eucariontes/genética , Evolución Molecular , Genómica/historia , Genómica/estadística & datos numéricos , Historia del Siglo XX , Internet , Datos de Secuencia Molecular , Técnicas de Amplificación de Ácido Nucleico , Filogenia , Proteínas de Plantas/genética , Plantas/genética , Reacción en Cadena de la Polimerasa/métodos , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN/métodos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...