Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Immunity ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39002541

RESUMEN

Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.

2.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999980

RESUMEN

We have previously reported that, in aortic rings, 18:1 lysophosphatidic acid (LPA) can induce both vasodilation and vasoconstriction depending on the integrity of the endothelium. The predominant molecular species generated in blood serum are poly-unsaturated LPA species, yet the vascular effects of these species are largely unexplored. We aimed to compare the vasoactive effects of seven naturally occurring LPA species in order to elucidate their potential pathophysiological role in vasculopathies. Vascular tone was measured using myography, and thromboxane A2 (TXA2) release was detected by ELISA in C57Bl/6 mouse aortas. The Ca2+-responses to LPA-stimulated primary isolated endothelial cells were measured by Fluo-4 AM imaging. Our results indicate that saturated molecular species of LPA elicit no significant effect on the vascular tone of the aorta. In contrast, all 18 unsaturated carbon-containing (C18) LPAs (18:1, 18:2, 18:3) were effective, with 18:1 LPA being the most potent. However, following inhibition of cyclooxygenase (COX), these LPAs induced similar vasorelaxation, primarily indicating that the vasoconstrictor potency differed among these species. Indeed, C18 LPA evoked a similar Ca2+-signal in endothelial cells, whereas in endothelium-denuded aortas, the constrictor activity increased with the level of unsaturation, correlating with TXA2 release in intact aortas. COX inhibition abolished TXA2 release, and the C18 LPA induced vasoconstriction. In conclusion, polyunsaturated LPA have markedly increased TXA2-releasing and vasoconstrictor capacity, implying potential pathophysiological consequences in vasculopathies.


Asunto(s)
Aorta , Lisofosfolípidos , Ratones Endogámicos C57BL , Tromboxano A2 , Vasoconstricción , Animales , Tromboxano A2/metabolismo , Vasoconstricción/efectos de los fármacos , Ratones , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Aorta/efectos de los fármacos , Aorta/metabolismo , Masculino , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Calcio/metabolismo
3.
Immunity ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38878769

RESUMEN

Fasting is associated with improved outcomes in cancer. Here, we investigated the impact of fasting on natural killer (NK) cell anti-tumor immunity. Cyclic fasting improved immunity against solid and metastatic tumors in an NK cell-dependent manner. During fasting, NK cells underwent redistribution from peripheral tissues to the bone marrow (BM). In humans, fasting also reduced circulating NK cell numbers. NK cells in the spleen of fasted mice were metabolically rewired by elevated concentrations of fatty acids and glucocorticoids, augmenting fatty acid metabolism via increased expression of the enzyme CPT1A, and Cpt1a deletion impaired NK cell survival and function in this setting. In parallel, redistribution of NK cells to the BM during fasting required the trafficking mediators S1PR5 and CXCR4. These cells were primed by an increased pool of interleukin (IL)-12-expressing BM myeloid cells, which improved IFN-γ production. Our findings identify a link between dietary restriction and optimized innate immune responses, with the potential to enhance immunotherapy strategies.

4.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798480

RESUMEN

Lymphocytes can circulate as well as take residence within tissues. While the mechanisms by which circulating populations are recruited to infection sites have been extensively characterized, the molecular basis for the recirculation of tissue-resident cells is less understood. Here, we show that helminth infection- or IL-25-induced redistribution of intestinal group 2 innate lymphoid cells (ILC2s) requires access to the lymphatic vessel network. Although the secondary lymphoid structure is an essential signal hub for adaptive lymphocyte differentiation and dispatch, it is redundant for ILC2 migration and effector function. Upon IL-25 stimulation, a dramatic change in epigenetic landscape occurs in intestinal ILC2s, leading to the expression of sphingosine-1-phosphate receptors (S1PRs). Among the various S1PRs, we found that S1PR5 is critical for ILC2 exit from intestinal tissue to lymph. By contrast, S1PR1 plays a dominant role in ILC2 egress from mesenteric lymph nodes to blood circulation and then to distal tissues including the lung where the redistributed ILC2s contribute to tissue repair. The requirement of two S1PRs for ILC2 migration is largely due to the dynamic expression of the tissue-retention marker CD69, which mediates S1PR1 internalization. Thus, our study demonstrates a stage-specific requirement of different S1P receptors for ILC2 redistribution during infection. We therefore propose a fundamental paradigm that innate and adaptive lymphocytes utilize a shared vascular network frame and specialized navigation cues for migration.

5.
Matrix Biol ; 130: 36-46, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723870

RESUMEN

Cellular Communication Network Factor 2, CCN2, is a profibrotic cytokine implicated in physiological and pathological processes in mammals. The expression of CCN2 is markedly increased in dystrophic muscles. Interestingly, diminishing CCN2 genetically or inhibiting its function improves the phenotypes of chronic muscular fibrosis in rodent models. Elucidating the cell-specific mechanisms behind the induction of CCN2 is a fundamental step in understanding its relevance in muscular dystrophies. Here, we show that the small lipids LPA and 2S-OMPT induce CCN2 expression in fibro/adipogenic progenitors (FAPs) through the activation of the LPA1 receptor and, to a lower extent, by also the LPA6 receptor. These cells show a stronger induction than myoblasts or myotubes. We show that the LPA/LPARs axis requires ROCK kinase activity and organized actin cytoskeleton upstream of YAP/TAZ signaling effectors to upregulate CCN2 levels, suggesting that mechanical signals are part of the mechanism behind this process. In conclusion, we explored the role of the LPA/LPAR axis on CCN2 expression, showing a strong cytoskeletal-dependent response in muscular FAPs.


Asunto(s)
Adipogénesis , Factor de Crecimiento del Tejido Conjuntivo , Lisofosfolípidos , Animales , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Ratones , Lisofosfolípidos/metabolismo , Comunicación Celular , Transducción de Señal , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Células Madre/metabolismo , Células Madre/citología , Regulación de la Expresión Génica , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Diferenciación Celular , Músculo Esquelético/metabolismo , Músculo Esquelético/citología , Humanos , Citoesqueleto de Actina/metabolismo
6.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675371

RESUMEN

Brain somatic gene recombination (SGR) and the endogenous reverse transcriptases (RTs) that produce it have been implicated in the etiology of Alzheimer's disease (AD), suggesting RT inhibitors as novel prophylactics or therapeutics. This retrospective, proof-of-concept study evaluated the incidence of AD in people with human immunodeficiency virus (HIV) with or without exposure to nucleoside RT inhibitors (NRTIs) using de-identified medical claims data. Eligible participants were aged ≥60 years, without pre-existing AD diagnoses, and pursued medical services in the United States from October 2015 to September 2016. Cohorts 1 (N = 46,218) and 2 (N = 32,923) had HIV. Cohort 1 had prescription claims for at least one NRTI within the exposure period; Cohort 2 did not. Cohort 3 (N = 150,819) had medical claims for the common cold without evidence of HIV or antiretroviral therapy. The cumulative incidence of new AD cases over the ensuing 2.75-year observation period was lowest in patients with NRTI exposure and highest in controls. Age- and sex-adjusted hazard ratios showed a significantly decreased risk for AD in Cohort 1 compared with Cohorts 2 (HR 0.88, p < 0.05) and 3 (HR 0.84, p < 0.05). Sub-grouping identified a decreased AD risk in patients with NRTI exposure but without protease inhibitor (PI) exposure. Prospective clinical trials and the development of next-generation agents targeting brain RTs are warranted.

7.
Cell Rep ; 43(4): 114061, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38578831

RESUMEN

Brain cells release and take up small extracellular vesicles (sEVs) containing bioactive nucleic acids. sEV exchange is hypothesized to contribute to stereotyped spread of neuropathological changes in the diseased brain. We assess mRNA from sEVs of postmortem brain from non-diseased (ND) individuals and those with Alzheimer's disease (AD) using short- and long-read sequencing. sEV transcriptomes are distinct from those of bulk tissue, showing enrichment for genes including mRNAs encoding ribosomal proteins and transposable elements such as human-specific LINE-1 (L1Hs). AD versus ND sEVs show enrichment of inflammation-related mRNAs and depletion of synaptic signaling mRNAs. sEV mRNAs from cultured murine primary neurons, astrocytes, or microglia show similarities to human brain sEVs and reveal cell-type-specific packaging. Approximately 80% of neural sEV transcripts sequenced using long-read sequencing are full length. Motif analyses of sEV-enriched isoforms elucidate RNA-binding proteins that may be associated with sEV loading. Collectively, we show that mRNA in brain sEVs is intact, selectively packaged, and altered in disease.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Vesículas Extracelulares , ARN Mensajero , Vesículas Extracelulares/metabolismo , Humanos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Encéfalo/metabolismo , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Neuronas/metabolismo , Astrocitos/metabolismo , Microglía/metabolismo , Transcriptoma/genética , Ratones Endogámicos C57BL
8.
Nat Commun ; 15(1): 2511, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509069

RESUMEN

In situ transcriptomic techniques promise a holistic view of tissue organization and cell-cell interactions. There has been a surge of multiplexed RNA in situ mapping techniques but their application to human tissues has been limited due to their large size, general lower tissue quality and high autofluorescence. Here we report DART-FISH, a padlock probe-based technology capable of profiling hundreds to thousands of genes in centimeter-sized human tissue sections. We introduce an omni-cell type cytoplasmic stain that substantially improves the segmentation of cell bodies. Our enzyme-free isothermal decoding procedure allows us to image 121 genes in large sections from the human neocortex in <10 h. We successfully recapitulated the cytoarchitecture of 20 neuronal and non-neuronal subclasses. We further performed in situ mapping of 300 genes on a diseased human kidney, profiled >20 healthy and pathological cell states, and identified diseased niches enriched in transcriptionally altered epithelial cells and myofibroblasts.


Asunto(s)
Perfilación de la Expresión Génica , ARN , Humanos , ARN/genética , Hibridación in Situ , Perfilación de la Expresión Génica/métodos , Transcriptoma , Citosol
9.
Cell Rep ; 42(12): 113545, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38064339

RESUMEN

Vitamin B12 (B12) deficiency causes neurological manifestations resembling multiple sclerosis (MS); however, a molecular explanation for the similarity is unknown. FTY720 (fingolimod) is a sphingosine 1-phosphate (S1P) receptor modulator and sphingosine analog approved for MS therapy that can functionally antagonize S1P1. Here, we report that FTY720 suppresses neuroinflammation by functionally and physically regulating the B12 pathways. Genetic and pharmacological S1P1 inhibition upregulates a transcobalamin 2 (TCN2)-B12 receptor, CD320, in immediate-early astrocytes (ieAstrocytes; a c-Fos-activated astrocyte subset that tracks with experimental autoimmune encephalomyelitis [EAE] severity). CD320 is also reduced in MS plaques. Deficiency of CD320 or dietary B12 restriction worsens EAE and eliminates FTY720's efficacy while concomitantly downregulating type I interferon signaling. TCN2 functions as a chaperone for FTY720 and sphingosine, whose complex induces astrocytic CD320 internalization, suggesting a delivery mechanism of FTY720/sphingosine via the TCN2-CD320 pathway. Taken together, the B12-TCN2-CD320 pathway is essential for the mechanism of action of FTY720.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Clorhidrato de Fingolimod/metabolismo , Astrocitos/metabolismo , Esfingosina/metabolismo , Vitamina B 12/farmacología , Vitamina B 12/uso terapéutico , Vitamina B 12/metabolismo , Transcobalaminas/metabolismo , Transcobalaminas/uso terapéutico , Glicoles de Propileno/metabolismo , Glicoles de Propileno/farmacología , Glicoles de Propileno/uso terapéutico , Vitaminas , Inmunosupresores/farmacología , Receptores de Lisoesfingolípidos/metabolismo
10.
Br J Pharmacol ; 180 Suppl 2: S23-S144, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123151

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Receptores Acoplados a Proteínas G , Humanos , Ligandos , Canales Iónicos/química , Receptores Citoplasmáticos y Nucleares
11.
J Inflamm Res ; 16: 5095-5109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026263

RESUMEN

Background: Increased endothelial permeability of pulmonary vessels is a primary pathological characteristic of septic acute lung injury (ALI). Previously, elevated lysophosphatidic acid (LPA) levels and LPA2 (an LPA receptor) expression have been found in the peripheral blood and lungs of septic mice, respectively. However, the specific role of LPA2 in septic ALI remains unclear. Methods: A lipopolysaccharide (LPS)-induced model of sepsis was established in wild-type (WT) and global LPA2 knockout (Lpar2-/-) mice. We examined mortality, lung injury, assessed endothelial permeability through Evans blue dye (EBD) assay in vivo, and transendothelial electrical resistance (TEER) of mouse lung microvascular endothelial cells (MLMECs) in vitro. Enzyme-linked immunosorbent assay (ELISA), histopathological, immunofluorescence, immunohistochemistry, and Western blot were employed to investigate the role of LPA2 in septic ALI. Results: Lpar2 deficiency increased vascular endothelial permeability, impaired lung injury, and increased mortality. Histological examination revealed aggravated inflammation, edema, hemorrhage and alveolar septal thickening in the lungs of septic Lpar2-/- mice. In vitro, loss of Lpar2 resulted in increased permeability of MLMECs. Pharmacological activation of LPA2 by the agonist DBIBB led to significantly reduced inflammation, edema and hemorrhage, as well as increased expression of the vascular endothelial tight junction (TJ) protein zonula occludens-1 (ZO-1) and claudin-5, as well as the adheren junction (AJ) protein VE-cadherin. Moreover, DBIBB treatment was found to alleviate mortality by protecting against vascular endothelial permeability. Mechanistically, we demonstrated that vascular endothelial permeability was alleviated through LPA-LPA2 signaling via the PLC-PKC-FAK pathway. Conclusion: These data provide a novel mechanism of endothelial barrier protection via PLC-PKC-FAK pathway and suggest that LPA2 may contribute to the therapeutic effects of septic ALI.

12.
Exp Biol Med (Maywood) ; 248(20): 1887-1894, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37837357

RESUMEN

Lysophosphatidylcholine (LPC) is a bioactive lipid that has been shown to attenuate endothelium-dependent vasorelaxation contributing to endothelial dysfunction; however, the underlying mechanisms are not well understood. In this study, we investigated the molecular mechanisms involved in the development of LPC-evoked impairment of endothelium-dependent vasorelaxation. In aortic rings isolated from wild-type (WT) mice, a 20-min exposure to LPC significantly reduced the acetylcholine chloride (ACh)-induced vasorelaxation indicating the impairment of normal endothelial function. Interestingly, pharmacological inhibition of autotaxin (ATX) by GLPG1690 partially reversed the endothelial dysfunction, suggesting that lysophosphatidic acid (LPA) derived from LPC may be involved in the effect. Therefore, the effect of LPC was also tested in aortic rings isolated from different LPA receptor knock-out (KO) mice. LPC evoked a marked reduction in ACh-dependent vasorelaxation in Lpar1, Lpar2, and Lpar4 KO, but its effect was significantly attenuated in Lpar5 KO vessels. Furthermore, addition of superoxide dismutase reduced the LPC-induced endothelial dysfunction in WT but not in the Lpar5 KO mice. In addition, LPC increased H2O2 release from WT vessels, which was significantly reduced in Lpar5 KO vessels. Our findings indicate that the ATX-LPA-LPA5 receptor axis is involved in the development of LPC-induced impairment of endothelium-dependent vasorelaxation via LPA5 receptor-mediated reactive oxygen species production. Taken together, in this study, we identified a new pathway contributing to the development of LPC-induced endothelial dysfunction.


Asunto(s)
Peróxido de Hidrógeno , Receptores del Ácido Lisofosfatídico , Animales , Ratones , Endotelio/metabolismo , Lisofosfatidilcolinas/farmacología , Lisofosfatidilcolinas/metabolismo , Lisofosfolípidos/farmacología , Lisofosfolípidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo
13.
bioRxiv ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37645998

RESUMEN

In situ transcriptomic techniques promise a holistic view of tissue organization and cell-cell interactions. Recently there has been a surge of multiplexed RNA in situ techniques but their application to human tissues and clinical biopsies has been limited due to their large size, general lower tissue quality and high background autofluorescence. Here we report DART-FISH, a versatile padlock probe-based technology capable of profiling hundreds to thousands of genes in centimeter-sized human tissue sections at cellular resolution. We introduced an omni-cell type cytoplasmic stain, dubbed RiboSoma that substantially improves the segmentation of cell bodies. We developed a computational decoding-by-deconvolution workflow to extract gene spots even in the presence of optical crowding. Our enzyme-free isothermal decoding procedure allowed us to image 121 genes in a large section from the human neocortex in less than 10 hours, where we successfully recapitulated the cytoarchitecture of 20 neuronal and non-neuronal subclasses. Additionally, we demonstrated the detection of transcripts as short as 461 nucleotides, including neuropeptides and discovered new cortical layer markers. We further performed in situ mapping of 300 genes on a diseased human kidney, profiled >20 healthy and pathological cell states, and identified diseased niches enriched in transcriptionally altered epithelial cells and myofibroblasts.

14.
Matrix Biol ; 119: 57-81, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37137584

RESUMEN

Lysophosphatidic acid (LPA) is a lysophospholipid that signals through six G-protein coupled receptors (LPARs), LPA1 to LPA6. LPA has been described as a potent modulator of fibrosis in different pathologies. In skeletal muscle, LPA increases fibrosis-related proteins and the number of fibro/adipogenic progenitors (FAPs). FAPs are the primary source of ECM-secreting myofibroblasts in acute and chronic damage. However, the effect of LPA on FAPs activation in vitro has not been explored. This study aimed to investigate FAPs' response to LPA and the downstream signaling mediators involved. Here, we demonstrated that LPA mediates FAPs activation by increasing their proliferation, expression of myofibroblasts markers, and upregulation of fibrosis-related proteins. Pretreatment with the LPA1/LPA3 antagonist Ki16425 or genetic deletion of LPA1 attenuated the LPA-induced FAPs activation, resulting in decreased expression of cyclin e1, α-SMA, and fibronectin. We also evaluated the activation of the focal adhesion kinase (FAK) in response to LPA. Our results showed that LPA induces FAK phosphorylation in FAPs. Treatment with the P-FAK inhibitor PF-228 partially prevented the induction of cell responses involved in FAPs activation, suggesting that this pathway mediates LPA signaling. FAK activation controls downstream cell signaling within the cytoplasm, such as the Hippo pathway. LPA induced the dephosphorylation of the transcriptional coactivator YAP (Yes-associated protein) and promoted direct expression of target pathway genes such as Ctgf/Ccn2 and Ccn1. The blockage of YAP transcriptional activity with Super-TDU further confirmed the role of YAP in LPA-induced FAPs activation. Finally, we demonstrated that FAK is required for LPA-dependent YAP dephosphorylation and the induction of Hippo pathway target genes. In conclusion, LPA signals through LPA1 to regulate FAPs activation by activating FAK to control the Hippo pathway.


Asunto(s)
Vía de Señalización Hippo , Lisofosfolípidos , Humanos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Lisofosfolípidos/farmacología , Lisofosfolípidos/metabolismo , Músculo Esquelético/metabolismo , Fibrosis
15.
Pharmacol Ther ; 246: 108432, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149155

RESUMEN

Multiple sclerosis (MS) is a neurological, immune-mediated demyelinating disease that affects people in the prime of life. Environmental, infectious, and genetic factors have been implicated in its etiology, although a definitive cause has yet to be determined. Nevertheless, multiple disease-modifying therapies (DMTs: including interferons, glatiramer acetate, fumarates, cladribine, teriflunomide, fingolimod, siponimod, ozanimod, ponesimod, and monoclonal antibodies targeting ITGA4, CD20, and CD52) have been developed and approved for the treatment of MS. All the DMTs approved to date target immunomodulation as their mechanism of action (MOA); however, the direct effects of some DMTs on the central nervous system (CNS), particularly sphingosine 1-phosphate (S1P) receptor (S1PR) modulators, implicate a parallel MOA that may also reduce neurodegenerative sequelae. This review summarizes the currently approved DMTs for the treatment of MS and provides details and recent advances in the molecular pharmacology, immunopharmacology, and neuropharmacology of S1PR modulators, with a special focus on the CNS-oriented, astrocyte-centric MOA of fingolimod.


Asunto(s)
Esclerosis Múltiple , Moduladores de los Receptores de fosfatos y esfingosina 1 , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Moduladores de los Receptores de fosfatos y esfingosina 1/uso terapéutico , Receptores de Esfingosina-1-Fosfato , Anticuerpos Monoclonales/uso terapéutico
16.
Methods Mol Biol ; 2561: 31-42, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36399263

RESUMEN

Resolving the complexity of the human brain at the level of single cells is essential to gaining an understanding of the immense diversity of cell types and functional states in both healthy and diseased brains. To exploit fully the technologies available for such studies, one must extract and isolate pure nuclei from unfixed postmortem tissue while preserving the molecules to be interrogated. Currently, nuclei are necessary substitutes for individual brain cells, since myriad cell types/sub-types constituting the human brain are embedded within the neuropil-a complex milieu of interconnected cells, processes, and synapses-which precludes intact and selective isolation of single brain cells. Here, we describe a protocol for the extraction and purification of intact single nuclei from frozen human brain tissue along with modifications to accommodate numerous downstream analyses, particularly for transcriptomic applications.


Asunto(s)
Encéfalo , Núcleo Celular , Humanos , Congelación , Núcleo Celular/metabolismo , Transcriptoma , Neurópilo
17.
Med ; 3(10): 648-650, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36242998

RESUMEN

Recent work by Bae et al.1 represents a major next-generation sequencing effort to identify somatic genomic mosaicism in normal and diseased human brains. Some samples displayed age-associated hypermutability, and the general possibility that somatic mutations can drive brain disease has implications for new therapeutic strategies, disease staging, biomarkers, and cohort selection for clinical trials.


Asunto(s)
Genómica , Mosaicismo , Encéfalo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación
18.
Front Cell Neurosci ; 16: 908401, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072569

RESUMEN

The destruction of the myelin sheath that encircles axons leads to impairments of nerve conduction and neuronal dysfunctions. A major demyelinating disorder is multiple sclerosis (MS), a progressively disabling disease in which immune cells attack the myelin. To date, there are no therapies to target selectively myelin lesions, repair the myelin or stop MS progression. Small peptides recognizing epitopes selectively exposed at sites of injury show promise for targeting therapeutics in various pathologies. Here we show the selective homing of the four amino acid peptide, cysteine-alanine-lysine glutamine (CAQK), to sites of demyelinating injuries in three different mouse models. Homing was assessed by administering fluorescein amine (FAM)-labeled peptides into the bloodstream of mice and analyzing sites of demyelination in comparison with healthy brain or spinal cord tissue. FAM-CAQK selectively targeted demyelinating areas in all three models and was absent from healthy tissue. At lesion sites, the peptide was primarily associated with the fibrous extracellular matrix (ECM) deposited in interstitial spaces proximal to reactive astrocytes. Association of FAM-CAQK was detected with tenascin-C although tenascin depositions made up only a minor portion of the examined lesion sites. In mice on a 6-week cuprizone diet, FAM-CAQK peptide crossed the nearly intact blood-brain barrier and homed to demyelinating fiber tracts. These results demonstrate the selective targeting of CAQK to demyelinating injuries under multiple conditions and confirm the previously reported association with the ECM. This work sets the stage for further developing CAQK peptide targeting for diagnostic and therapeutic applications aimed at localized myelin repair.

19.
Circ Res ; 131(5): 388-403, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35920162

RESUMEN

RATIONALE: Myocardial infarction (MI) is one of the most dangerous adverse cardiovascular events. Our previous study found that lysophosphatidic acid (LPA) is increased in human peripheral blood after MI, and LPA has a protective effect on the survival and proliferation of various cell types. However, the role of LPA and its receptors in MI is less understood. OBJECTIVES: To study the unknown role of LPA and its receptors in heart during MI. METHODS AND RESULTS: In this study, we found that mice also had elevated LPA level in peripheral blood, as well as increased cardiac expression of its receptor LPA2 in the early stages after MI. With adult and neonate MI models in global Lpar2 knockout (Lpar2-KO) mice, we found Lpar2 deficiency increased vascular leak leading to disruption of its homeostasis, so as to impaired heart function and increased early mortality. Histological examination revealed larger scar size, increased fibrosis, and reduced vascular density in the heart of Lpar2-KO mice. Furthermore, Lpar2-KO also attenuated blood flow recovery after femoral artery ligation with decreased vascular density in gastrocnemius. Our study revealed that Lpar2 was mainly expressed and altered in cardiac endothelial cells during MI, and use of endothelial-specific Lpar2 knockout mice phenocopied the global knockout mice. Additionally, adenovirus-Lpar2 and pharmacologically activated LPA2 significantly improved heart function, reduced scar size, increased vascular formation, and alleviated early mortality by maintaining vascular homeostasis owing to protecting vessels from leakage. Mechanistic studies demonstrated that LPA-LPA2 signaling could promote endothelial cell proliferation through PI3K-Akt/PLC-Raf1-Erk pathway and enhanced endothelial cell tube formation via PKD1-CD36 signaling. CONCLUSIONS: Our results indicate that endothelial LPA-LPA2 signaling promotes angiogenesis and maintains vascular homeostasis, which is vital for restoring blood flow and repairing tissue function in ischemic injuries. Targeting LPA-LPA2 signal might have clinical therapeutic potential to protect the heart from ischemic injury.


Asunto(s)
Infarto del Miocardio , Receptores del Ácido Lisofosfatídico , Animales , Cicatriz , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Homeostasis , Humanos , Lisofosfolípidos , Ratones , Ratones Noqueados , Infarto del Miocardio/genética , Fosfatidilinositol 3-Quinasas , Receptores del Ácido Lisofosfatídico/genética , Receptores del Ácido Lisofosfatídico/metabolismo , Remodelación Ventricular
20.
J Med Chem ; 65(16): 10956-10974, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35948083

RESUMEN

Spinal cord injuries (SCIs) irreversibly disrupt spinal connectivity, leading to permanent neurological disabilities. Current medical treatments for reducing the secondary damage that follows the initial injury are limited to surgical decompression and anti-inflammatory drugs, so there is a pressing need for new therapeutic strategies. Inhibition of the type 2 lysophosphatidic acid receptor (LPA2) has recently emerged as a new potential pharmacological approach to decrease SCI-associated damage. Toward validating this receptor as a target in SCI, we have developed a new series of LPA2 antagonists, among which compound 54 (UCM-14216) stands out as a potent and selective LPA2 receptor antagonist (Emax = 90%, IC50 = 1.9 µM, KD = 1.3 nM; inactive at LPA1,3-6 receptors). This compound shows efficacy in an in vivo mouse model of SCI in an LPA2-dependent manner, confirming the potential of LPA2 inhibition for providing a new alternative for treating SCI.


Asunto(s)
Receptores del Ácido Lisofosfatídico , Traumatismos de la Médula Espinal , Animales , Ratones , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...