Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
PLoS One ; 19(3): e0297212, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38437198

RESUMEN

Mechanical Control of Relaxation refers to the dependence of myocardial relaxation on the strain rate just prior to relaxation, but the mechanisms of enhanced relaxation are not well characterized. This study aimed to characterize how crossbridge kinetics varied with strain rate and time-to-stretch as the myocardium relaxed in early diastole. Ramp-stretches of varying rates (amplitude = 1% muscle length) were applied to intact rat cardiac trabeculae following a load-clamp at 50% of the maximal developed twitch force, which provides a first-order estimate of ejection and coupling to an afterload. The resultant stress-response was calculated as the difference between the time-dependent stress profile between load-clamped twitches with and without a ramp-stretch. The stress-response exhibited features of the step-stretch response of activated, permeabilized myocardium, such as distortion-dependent peak stress, rapid force decay related to crossbridge detachment, and stress recovery related to crossbridge recruitment. The peak stress was strain rate dependent, but the minimum stress and the time-to-minimum stress values were not. The initial rapid change in the stress-response indicates enhanced crossbridge detachment at higher strain rates during relaxation in intact cardiac trabeculae. Physiologic considerations, such as time-varying calcium, are discussed as potential limitations to fitting these data with traditional distortion-recruitment models of crossbridge activity.


Asunto(s)
Allium , Corazón , Animales , Ratas , Miocardio , Calcio de la Dieta , Hueso Esponjoso
2.
Physiol Rep ; 11(21): e15849, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37960992

RESUMEN

Dysregulation of collagen deposition, degradation, and crosslinking in the heart occur in response to increased physiological stress. Collagen content has been associated with ultrasonic backscatter (brightness), and we have shown that the anisotropy of backscatter can be used to measure myofiber alignment, that is, variation in the brightness of a left ventricular short-axis ultrasound. This study investigated collagen's role in anisotropy of ultrasonic backscatter; female Sprague-Dawley rat hearts were treated with a collagenase-containing solution, for either 10 or 30 min, or control solution for 30 min. Serial ultrasound images were acquired at 2.5-min intervals throughout collagenase treatment. Ultrasonic backscatter was assessed from anterior and posterior walls, where collagen fibrils are predominately aligned perpendicular to the angle of insonification, and the lateral and septal walls, where collagen is predominately aligned parallel to the angle of insonification. Collagenase digestion reduced backscatter anisotropy within the myocardium. Collagen remains present in the myocardium throughout collagenase treatment, but crosslinking is altered within 10 min. These data suggest that crosslinking of collagen modulates the anisotropy of ultrasonic backscatter. An Anisotropy Index, derived from differences in backscatter from parallel and perpendicularly aligned fibers, may provide a noninvasive index to monitor the progression and state of myocardial fibrosis.


Asunto(s)
Ecocardiografía , Ultrasonido , Femenino , Ratas , Animales , Ecocardiografía/métodos , Anisotropía , Ratas Sprague-Dawley , Miocardio , Colágeno
3.
FASEB J ; 37(5): e22908, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37039784

RESUMEN

Peroxisomal fatty acyl-CoA reductase 1 (FAR1) is a rate-limiting enzyme for ether lipid (EL) synthesis. Gene mutations in FAR1 cause a rare human disease. Furthermore, altered EL homeostasis has also been associated with various prevalent human diseases. Despite their importance in human health, the exact cellular functions of FAR1 and EL are not well-understood. Here, we report the generation and initial characterization of the first Far1 knockout (KO) mouse model. Far1 KO mice were subviable and displayed growth retardation. The adult KO male mice had smaller testes and were infertile. H&E and immunofluorescent staining showed fewer germ cells in seminiferous tubules. Round spermatids were present but no elongated spermatids or spermatozoa were observed, suggesting a spermatogenesis arrest at this stage. Large multi-nucleated giant cells (MGC) were found lining the lumen of seminiferous tubules with many of them undergoing apoptosis. The immunofluorescent signal of TEX14, an essential component of intercellular bridges (ICB) between developing germ cells, was greatly reduced and mislocalized in KO testis, suggesting the disrupted ICBs as an underlying cause of MGC formation. Integrative analysis of our total testis RNA-sequencing results and published single-cell RNA-sequencing data unveiled cell type-specific molecular alterations underlying the spermatogenesis arrest. Many genes essential for late germ cell development showed dramatic downregulation, whereas genes essential for extracellular matrix dynamics and cell-cell interactions were among the most upregulated genes. Together, this work identified the cell type-specific requirement of ELs in spermatogenesis and suggested a critical role of Far1/ELs in the formation/maintenance of ICB during meiosis.


Asunto(s)
Azoospermia , Éter , Ratones , Animales , Masculino , Humanos , Ratones Noqueados , Espermatogénesis/genética , Espermátides , Éteres , Éteres de Etila , Lípidos , ARN , Factores de Transcripción/genética
4.
J Vis Exp ; (192)2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36876939

RESUMEN

Diastolic dysfunction is a common phenotype across cardiovascular disease presentations. In addition to elevated cardiac stiffness (elevated left ventricular end-diastolic pressure), impaired cardiac relaxation is a key diagnostic indicator of diastolic dysfunction. While relaxation requires the removal of cytosolic calcium and deactivation of sarcomeric thin filaments, targeting such mechanisms has yet to provide effective treatments. Mechanical mechanisms, such as blood pressure (i.e., afterload), have been theorized to modify relaxation. Recently, we showed that modifying the strain rate of a stretch, not afterload, was both necessary and sufficient to modify the subsequent relaxation rate of myocardial tissue. The strain rate dependence of relaxation, called the mechanical control of relaxation (MCR), can be assessed using intact cardiac trabeculae. This protocol describes the preparation of a small animal model, experimental system and chamber, isolation of the heart and subsequent isolation of a trabecula, preparation of the experimental chamber, and experimental and analysis protocols. Evidence for lengthening strains in the intact heart suggests that MCR might provide new arenas for better characterization of pharmacological treatments, along with a method to assess myofilament kinetics in intact muscles. Therefore, studying the MCR may elucidate a path to novel approaches and new frontiers in the treatment of heart failure.


Asunto(s)
Insuficiencia Cardíaca , Corazón , Animales , Miocardio , Citoesqueleto de Actina , Presión Sanguínea
6.
Nutrients ; 13(9)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34579006

RESUMEN

Fructose and salt intake remain high, particularly in adolescents and young adults. The present studies were designed to evaluate the impact of high fructose and/or salt during pre- and early adolescence on salt sensitivity, blood pressure, arterial compliance, and left ventricular (LV) function in maturity. Male 5-week-old Sprague Dawley rats were studied over three 3-week phases (Phases I, II, and III). Two reference groups received either 20% glucose + 0.4% NaCl (GCS-GCS) or 20% fructose + 4% NaCl (FHS-FHS) throughout this study. The two test groups ingested fructose + 0.4% NaCl (FCS) or FHS during Phase I, then GCS in Phase II, and were then challenged with 20% glucose + 4% NaCl (GHS) in Phase III: FCS-GHS and FHS-GHS, respectively. Compared with GCS-GCS, systolic and mean pressures were significantly higher at the end of Phase III in all groups fed fructose during Phase I. Aortic pulse wave velocity (PWV) was elevated at the end of Phase I in FHS-GHS and FHS-FHS (vs. GCS-GCS). At the end of Phase III, PWV and renal resistive index were higher in FHS-GHS and FHS-FHS vs. GCS-GCS. Diastolic, but not systolic, LV function was impaired in the FHS-GHS and FHS-FHS but not FCS-FHS rats. Consumption of 20% fructose by male rats during adolescence results in salt-sensitive hypertension in maturity. When ingested with a high-salt diet during this early plastic phase, dietary fructose also predisposes to vascular stiffening and LV diastolic dysfunction in later life.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Sistema Cardiovascular/efectos de los fármacos , Dieta/efectos adversos , Fructosa/administración & dosificación , Cloruro de Sodio Dietético/administración & dosificación , Animales , Aorta/fisiopatología , Presión Sanguínea/efectos de los fármacos , Dieta/métodos , Modelos Animales de Enfermedad , Hipertensión/etiología , Masculino , Análisis de la Onda del Pulso , Ratas , Ratas Sprague-Dawley , Rigidez Vascular/efectos de los fármacos , Disfunción Ventricular Izquierda/etiología , Función Ventricular Izquierda/efectos de los fármacos
7.
Arch Biochem Biophys ; 707: 108909, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34015323

RESUMEN

Rapid myocardial relaxation is essential in maintaining cardiac output, and impaired relaxation is an early indicator of diastolic dysfunction. While the biochemical modifiers of relaxation are well known to include calcium handling, thin filament activation, and myosin kinetics, biophysical and biomechanical modifiers can also alter relaxation. We have previously shown that the relaxation rate is increased by an increasing strain rate, not a reduction in afterload. The slope of the relaxation rate to strain rate relationship defines Mechanical Control of Relaxation (MCR). To investigate MCR further, we performed in vitro experiments and computational modeling of preload-adjustment using intact rat cardiac trabeculae. Trabeculae studies are often performed using isometric (fixed-end) muscles at optimal length (Lo, length producing maximal developed force). We determined that reducing muscle length from Lo increased MCR by 20%, meaning that reducing preload could substantially increase the sensitivity of the relaxation rate to the strain rate. We subsequently used computational modeling to predict mechanisms that might underlie this preload-dependence. Computational modeling was not able to fully replicate experimental data, but suggested that thin-filament properties are not sufficient to explain preload-dependence of MCR because the model required the thin-filament to become more activated at reduced preloads. The models suggested that myosin kinetics may underlie the increase in MCR at reduced preload, an effect that can be enhanced by force-dependence. Relaxation can be modified and enhanced by reduced preload. Computational modeling implicates myosin-based targets for treatment of diastolic dysfunction, but further model refinements are needed to fully replicate experimental data.


Asunto(s)
Modelos Biológicos , Miosinas/metabolismo , Estrés Mecánico , Fenómenos Biomecánicos , Cinética , Músculos/metabolismo , Músculos/fisiología , Soporte de Peso
8.
Integr Blood Press Control ; 13: 111-124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33061560

RESUMEN

INTRODUCTION: High fructose and salt consumption continues to be prevalent in western society. Existing studies show that a rat model reflecting a diet of fructose and salt consumed by the upper 20th percentile of the human population results in salt-sensitive hypertension mitigated by treatment with an antioxidant. We hypothesized that dietary fructose, rather than glucose, combined with high salt leads to aortic stiffening and decreased renal artery compliance. We also expect that daily supplementation with the antioxidant, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (+T; Tempol), will ameliorate the increase in mean arterial pressure (MAP) and vascular changes. METHODS: Male Sprague Dawley rats were studied with either 20% fructose or 20% glucose in the drinking water and normal salt (0.4%) or high salt (4%) in the chow resulting in four dietary groups: fructose normal Fru+NS or high salt (Fru+HS) or glucose with normal (Glu+NS) or high salt (Glu+HS). Tempol (+T) was added to the drinking water in half of the rats in each group for 3 weeks. RESULTS: MAP was significantly elevated and the glucose:insulin ratio was depressed in the Fru+HS. Both parameters were normalized in Fru+HS+T. Plasma renin activity (PRA) and kidney tissue angiotensin II (Ang II) were not suppressed in the high salt groups. Pulse wave velocity (PWV), radial ascending strain, and distensibility coefficient of the ascending aorta were significantly decreased in Fru+HS rats and improved in the Fru+HS+T rats. No differences occurred in left ventricular systolic function, but the ratio of early (E) to late (A) transmitral filling velocities was decreased and renal resistive index (RRI) was higher in Fru+HS rats; antioxidant treatment did not change these indices. DISCUSSION: Thus, short-term consumption of high fructose plus high salt diet by rats results in modest hypertension, insulin resistance, diminished aortic and renal artery compliance, and left ventricular diastolic dysfunction. Antioxidant treatment ameliorates the blood pressure, insulin resistance and aortic stiffness, but not renal artery stiffness and left ventricular diastolic dysfunction.

9.
Front Physiol ; 11: 494, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547410

RESUMEN

The Proline, Glutamate, Valine and Lysine-rich (PEVK) region of titin constitutes an entropic spring that provides passive tension to striated muscle. To study the functional and structural repercussions of a small reduction in the size of the PEVK region, we investigated skeletal muscles of a mouse with the constitutively expressed C-terminal PEVK exons 219-225 deleted, the TtnΔ219-225 model (MGI: TtnTM 2.1Mgot ). Based on this deletion, passive tension in skeletal muscle was predicted to be increased by ∼17% (sarcomere length 3.0 µm). In contrast, measured passive tension (sarcomere length 3.0 µm) in both soleus and EDL muscles was increased 53 ± 11% and 62 ± 4%, respectively. This unexpected increase was due to changes in titin, not to alterations in the extracellular matrix, and is likely caused by co-expression of two titin isoforms in TtnΔ219-225 muscles: a larger isoform that represents the TtnΔ219-225 N2A titin and a smaller isoform, referred to as N2A2. N2A2 represents a splicing adaption with reduced expression of spring element exons, as determined by titin exon microarray analysis. Maximal tetanic tension was increased in TtnΔ219-225 soleus muscle (WT 240 ± 9; TtnΔ219-225 276 ± 17 mN/mm2), but was reduced in EDL muscle (WT 315 ± 9; TtnΔ219-225 280 ± 14 mN/mm2). The changes in active tension coincided with a switch toward slow fiber types and, unexpectedly, faster kinetics of tension generation and relaxation. Functional overload (FO; ablation) and hindlimb suspension (HS; unloading) experiments were also conducted. TtnΔ219-225 mice showed increases in both longitudinal hypertrophy (increased number of sarcomeres in series) and cross-sectional hypertrophy (increased number of sarcomeres in parallel) in response to FO and attenuated cross-sectional atrophy in response to HS. In summary, slow- and fast-twitch muscles in a mouse model devoid of titin's PEVK exons 219-225 have high passive tension, due in part to alterations elsewhere in splicing of titin's spring region, increased kinetics of tension generation and relaxation, and altered trophic responses to both functional overload and unloading. This implicates titin's C-terminal PEVK region in regulating passive and active muscle mechanics and muscle plasticity.

10.
Am J Physiol Regul Integr Comp Physiol ; 319(1): R1-R10, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32348680

RESUMEN

Dynamic exercise elicits robust increases in sympathetic activity in part due to muscle metaboreflex activation (MMA), a pressor response triggered by activation of skeletal muscle afferents. MMA during dynamic exercise increases arterial pressure by increasing cardiac output via increases in heart rate, ventricular contractility, and central blood volume mobilization. In heart failure, ventricular function is compromised, and MMA elicits peripheral vasoconstriction. Ventricular-vascular coupling reflects the efficiency of energy transfer from the left ventricle to the systemic circulation and is calculated as the ratio of effective arterial elastance (Ea) to left ventricular maximal elastance (Emax). The effect of MMA on Ea in normal subjects is unknown. Furthermore, whether muscle metaboreflex control of Ea is altered in heart failure has not been investigated. We utilized two previously published methods of evaluating Ea [end-systolic pressure/stroke volume (EaPV)] and [heart rate × vascular resistance (EaZ)] during rest, mild treadmill exercise, and MMA (induced via partial reductions in hindlimb blood flow imposed during exercise) in chronically instrumented conscious canines before and after induction of heart failure via rapid ventricular pacing. In healthy animals, MMA elicits significant increases in effective arterial elastance and stroke work that likely maintains ventricular-vascular coupling. In heart failure, Ea is high, and MMA-induced increases are exaggerated, which further exacerbates the already uncoupled ventricular-vascular relationship, which likely contributes to the impaired ability to raise stroke work and cardiac output during exercise in heart failure.


Asunto(s)
Arterias/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Animales , Arterias/inervación , Perros , Elasticidad , Femenino , Frecuencia Cardíaca , Miembro Posterior/irrigación sanguínea , Masculino , Músculo Esquelético/inervación , Neuronas Aferentes , Reflejo/fisiología , Volumen Sistólico , Resistencia Vascular
11.
J Am Heart Assoc ; 9(9): e015611, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32319345

RESUMEN

Background Approximately 1 in 6 adolescents report regular binge alcohol consumption, and we hypothesize it affects heart growth during this period. Methods and Results Adolescent, genetically diverse, male Wistar rats were gavaged with water or ethanol once per day for 6 days. In vivo structure and function were assessed before and after exposure. Binge alcohol exposure in adolescence significantly impaired normal cardiac growth but did not affect whole-body growth during adolescence, therefore this pathology was specific to the heart. Binge rats also exhibited signs of accelerated pathological growth (concentric cellular hypertrophy and thickening of the myocardial wall), suggesting a global reorientation from physiologic to pathologic growth. Binge rats compensated for their smaller filling volumes by increasing systolic function and sympathetic stimulation. Consequently, binge alcohol exposure increased PKA (protein kinase A) phosphorylation of troponin I, inducing myofilament calcium desensitization. Binge alcohol also impaired in vivo relaxation and increased titin-based cellular stiffness due to titin phosphorylation by PKCα (protein kinase C α). Mechanistically, alcohol inhibited extracellular signal-related kinase activity, a nodal signaling kinase activating physiology hypertrophy. Thus, binge alcohol exposure depressed genes involved in growth. These cardiac structural alterations from binge alcohol exposure persisted through adolescence even after cessation of ethanol exposure. Conclusions Alcohol negatively impacts function in the adult heart, but the adolescent heart is substantially more sensitive to its effects. This difference is likely because adolescent binge alcohol impedes the normal rapid physiological growth and reorients it towards pathological hypertrophy. Many adolescents regularly binge alcohol, and here we report a novel pathological consequence as well as mechanisms involved.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/complicaciones , Cardiomegalia/etiología , Corazón/crecimiento & desarrollo , Miocardio/patología , Adaptación Fisiológica , Factores de Edad , Animales , Señalización del Calcio , Cardiomegalia/enzimología , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Conectina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Miocardio/enzimología , Fosforilación , Proteína Quinasa C-alfa/metabolismo , Ratas Wistar , Troponina I/metabolismo
13.
Front Physiol ; 11: 15, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116740

RESUMEN

A sedentary lifestyle is associated with increased cardiovascular risk factors and reduced cardiac compliance when compared to a lifestyle that includes exercise training. Exercise training increases cardiac compliance in humans, but the mechanisms underlying this improvement are unknown. A major determinant of cardiac compliance is the compliance of the giant elastic protein titin. Experimentally reducing titin compliance in animal models reduces exercise tolerance, but it is not known whether sedentary versus chronic exercise conditions cause differences in titin isoform content. We hypothesized that sedentary conditions would be associated with a reduction in the content of the longer, more compliant N2BA isoform relative to the stiffer N2B isoform (yielding a reduced N2BA:N2B ratio) compared to age-matched exercising controls. We obtained left ventricles from 16-week old rats housed for 12 weeks in standard (sedentary) or voluntary running wheel (exercised) housing. The N2BA:N2B ratio was decreased in the hearts of sedentary versus active rats (p = 0.041). Gene expression of a titin mRNA splicing factor, RNA Binding Motif 20 protein (RBM20), correlated negatively with N2BA:N2B ratios (p = 0.006, r = -0.449), but was not different between groups, suggesting that RBM20 may be regulated post-transcriptionally. Total phosphorylation of cardiac titin was not different between the active and sedentary groups. This study is the first to demonstrate that sedentary rats exhibit reduced cardiac titin N2BA:N2B isoform ratios, which implies reduced cardiac compliance. These data suggest that a lack of exercise (running wheel) reduces cardiac compliance and that exercise itself increases cardiac compliance.

14.
Physiol Rep ; 8(4): e14382, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32109347

RESUMEN

Intact cardiomyocytes are used to investigate cardiac contractility and evaluate the efficacy of new therapeutic compounds. Primary enzymatic isolation of adult rodent cardiomyocytes has limitations, including low cardiomyocyte survival, which is likely due to ischemic conditions and/or membrane damage. The addition of Poloxamer 188 (P188) has been used to reduce ischemia- and membrane-related damage in ischemia-reperfusion and muscular dystrophy studies. P188 stabilizes membranes, reducing cell death. Cardiomyocytes were isolated from rats, under three conditions: (1) using standard isolation solutions, (2) with P188 added during cannulation (ischemic event), and (3) with P188 added during cannulation, enzymatic digestion, and trituration. Cell survival was assessed by quantifying the number of rod-shaped versus contracted cells on the day of isolation and up to 3 days post-isolation. Adding P188 only during cannulation yielded improved survival on the day of isolation. Little difference in survival was seen among the three conditions in the days post-isolation. Cardiomyocyte function was assessed by measuring calcium transients and unloaded sarcomere lengths for up to 2 days post-isolation. P188 did not consistently alter calcium handling or sarcomere shortening in the isolated cardiomyocytes. We conclude that the addition of P188 to the cannulation (e.g., wash) of the isolated heart may improve initial survival of cardiomyocytes upon primary enzymatic isolation.


Asunto(s)
Miocitos Cardíacos/efectos de los fármacos , Poloxámero/farmacología , Cultivo Primario de Células/métodos , Tensoactivos/farmacología , Animales , Señalización del Calcio , Células Cultivadas , Contracción Miocárdica , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Ratas , Ratas Sprague-Dawley
15.
Ultrasound Med Biol ; 45(8): 2075-2085, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31155403

RESUMEN

Myocardial fiber architecture is a physiologically important regulator of ejection fraction, strain and pressure development. Apparent ultrasonic backscatter has been shown to be a useful method for recreating the myocardial fiber architecture in human-sized sheep hearts because of the dependence of its amplitude on the relative orientation of a myofiber to the angle of ultrasonic insonification. Thus, the anisotropy of the backscatter signal is linked to and provides information about the fiber orientation. In this study, we sought to determine whether apparent backscatter could be used to measure myofiber orientation in rodent hearts. Fixed adult-rat hearts were imaged intact, and both a transmural cylindrical core and transmural wedge of the left ventricular free wall were imaged. Cylindrical core samples confirmed that backscatter anisotropy could be measured in rat hearts. Ultrasound and histologic analysis of transmural myocardial wedge samples confirmed that the apparent backscatter could be reproducibly mapped to fiber orientation (angle of the fiber relative to the direction of insonification). These data provided a quantitative relationship between the apparent backscatter and fiber angle that was applied to whole-heart images. Myocardial fiber architecture was successfully measured in rat hearts. Quantifying myocardial fiber architecture, using apparent backscatter, provides a number of advantages, including its scalable use from rodents to man, its rapid low-cost acquisition and minimal contraindications. The method outlined in this study provides a method for investigators to begin detailed assessments of how the myocardial fiber architecture changes in preclinical disease models, which can be immediately translated into the clinic.


Asunto(s)
Ecocardiografía/métodos , Corazón/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Femenino , Modelos Animales , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Dispersión de Radiación
16.
Arch Biochem Biophys ; 664: 62-67, 2019 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-30710504

RESUMEN

Movement of the myocardium can modify organ-level cardiac function and its molecular (crossbridge) mechanisms. This motion, which is defined by myocardial strain and strain rate (muscle shortening, lengthening, and the speed of these movements), occurs throughout the cardiac cycle, including during isovolumic periods. This review highlights how the left ventricular myocardium moves throughout the cardiac cycle, how muscle mechanics experiments provide insight into the regulation of forces used to move blood in and out of the left ventricle, and its impact on (and regulation by) crossbridge and sarcomere kinetics. We specifically highlight how muscle mechanics experiments explain how myocardial relaxation is accelerated by lengthening (strain rate) during late systole and isovolumic relaxation, a lengthening which has been measured in human hearts. Advancing and refining both in vivo measurement and ex vivo protocols with physiologic strain and strain rates could reveal important insights into molecular (crossbridge) kinetics. These advances could provide an improvement in both diagnosis and precise treatment of cardiac dysfunction.


Asunto(s)
Corazón/fisiología , Miofibrillas/metabolismo , Estrés Mecánico , Animales , Humanos , Movimiento
17.
J Biomech Eng ; 141(6)2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30098173

RESUMEN

The present study assessed the acute effects of isoproterenol on left ventricular (LV) mechanics in healthy rats with the hypothesis that ß-adrenergic stimulation influences the mechanics of different myocardial regions of the LV wall in different ways. To accomplish this, magnetic resonance images were obtained in the LV of healthy rats with or without isoproterenol infusion. The LV contours were divided into basal, midventricular, and apical regions. Additionally, the midventricular myocardium was divided into three transmural layers with each layer partitioned into four segments (i.e., septal, inferior, lateral, and anterior). Peak systolic strains and torsion were quantified for each region. Isoproterenol significantly increased peak systolic radial strain and circumferential-longitudinal (CL) shear strain, as well as ventricular torsion, throughout the basal, midventricle, and apical regions. In the midventricle, isoproterenol significantly increased peak systolic radial strain, and induced significant increases in peak systolic circumferential strain and longitudinal strain in the septum. Isoproterenol consistently increased peak systolic CL shear strain in all midventricular segments. Ventricular torsion was significantly increased in nearly all segments except the inferior subendocardium. The effects of isoproterenol on LV systolic mechanics (i.e., three-dimensional (3D) strains and torsion) in healthy rats depend on the region. This region dependency is also strain component-specific. These results provide insight into the regional response of LV mechanics to ß-adrenergic stimulation in rats and could act as a baseline for future studies on subclinical abnormalities associated with the inotropic response in heart disease.

18.
Nat Commun ; 9(1): 4341, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30337525

RESUMEN

Reactive oxygen species (ROS) contribute to the etiology of multiple muscle-related diseases. There is emerging evidence that cellular stress can lead to destabilization of sarcomeres, the contractile unit of muscle. However, it is incompletely understood how cellular stress induces structural destabilization of sarcomeres. Here we report that glutathionylation of SMYD2 contributes to a loss of myofibril integrity and degradation of sarcomeric proteins mediated by MMP-2 and calpain 1. We used a clickable glutathione approach in a cardiomyocyte cell line and found selective glutathionylation of SMYD2 at Cys13. Biochemical analysis demonstrated that SMYD2 upon oxidation or glutathionylation at Cys13 loses its interaction with Hsp90 and N2A, a domain of titin. Upon dissociation from SMYD2, N2A or titin is degraded by activated MMP-2, suggesting a protective role of SMYD2 in sarcomere stability. Taken together, our results support that SMYD2 glutathionylation is a novel molecular mechanism by which ROS contribute to sarcomere destabilization.


Asunto(s)
Glutatión/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteolisis , Sarcómeros/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Supervivencia Celular , Cisteína/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Miofibrillas/metabolismo , Oxidación-Reducción , Ratas , Especies Reactivas de Oxígeno/metabolismo
19.
Exp Physiol ; 102(9): 1055-1066, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28762234

RESUMEN

NEW FINDINGS: What is the topic of this review? This review focuses on how in vivo and molecular measurements of cardiac passive stiffness can predict exercise tolerance and how exercise training can reduce cardiac passive stiffness. What advances does it highlight? This review highlights advances in understanding the relationship between molecular (titin-based) and in vivo (left ventricular) passive stiffness, how passive stiffness modifies exercise tolerance, and how exercise training may be therapeutic for cardiac diseases with increased passive stiffness. Exercise can help alleviate the negative effects of cardiovascular disease and cardiovascular co-morbidities associated with sedentary behaviour; this may be especially true in diseases that are associated with increased left ventricular passive stiffness. In this review, we discuss the inverse relationship between exercise tolerance and cardiac passive stiffness. Passive stiffness is the physical property of cardiac muscle to produce a resistive force when stretched, which, in vivo, is measured using the left ventricular end diastolic pressure-volume relationship or is estimated using echocardiography. The giant elastic protein titin is the major contributor to passive stiffness at physiological muscle (sarcomere) lengths. Passive stiffness can be modified by altering titin isoform size or by post-translational modifications. In both human and animal models, increased left ventricular passive stiffness is associated with reduced exercise tolerance due to impaired diastolic filling, suggesting that increased passive stiffness predicts reduced exercise tolerance. At the same time, exercise training itself may induce both short- and long-term changes in titin-based passive stiffness, suggesting that exercise may be a treatment for diseases associated with increased passive stiffness. Direct modification of passive stiffness to improve exercise tolerance is a potential therapeutic approach. Titin passive stiffness itself may be a treatment target based on the recent discovery of RNA binding motif 20, which modifies titin isoform size and passive stiffness. Translating these discoveries that link exercise and left ventricular passive stiffness may provide new methods to enhance exercise tolerance and treat patients with cardiovascular disease.


Asunto(s)
Conectina/metabolismo , Ejercicio Físico/fisiología , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Tolerancia al Ejercicio/fisiología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Humanos , Miocardio/metabolismo
20.
J Mol Cell Cardiol ; 103: 65-73, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28087265

RESUMEN

Fast relaxation of cross-bridge generated force in the myocardium facilitates efficient diastolic function. Recently published research studying mechanisms that modulate the relaxation rate has focused on molecular factors. Mechanical factors have received less attention since the 1980s when seminal work established the theory that reducing afterload accelerates the relaxation rate. Clinical trials using afterload reducing drugs, partially based on this theory, have thus far failed to improve outcomes for patients with diastolic dysfunction. Therefore, we reevaluated the protocols that suggest reducing afterload accelerates the relaxation rate and identified that myocardial relengthening was a potential confounding factor. We hypothesized that the speed of myocardial relengthening at end systole (end systolic strain rate), and not afterload, modulates relaxation rate and tested this hypothesis using electrically-stimulated trabeculae from mice, rats, and humans. We used load-clamp techniques to vary afterload and end systolic strain rate independently. Our data show that the rate of relaxation increases monotonically with end systolic strain rate but is not altered by afterload. Computer simulations mimic this behavior and suggest that fast relengthening quickens relaxation by accelerating the detachment of cross-bridges. The relationship between relaxation rate and strain rate is novel and upends the prevailing theory that afterload modifies relaxation. In conclusion, myocardial relaxation is mechanically modified by the rate of stretch at end systole. The rate of myocardial relengthening at end systole may be a new diagnostic indicator or target for treatment of diastolic dysfunction.


Asunto(s)
Hemodinámica , Contracción Miocárdica/fisiología , Animales , Femenino , Ventrículos Cardíacos , Humanos , Masculino , Ratones , Modelos Cardiovasculares , Ratas , Función Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...