Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38610476

RESUMEN

The advancement of unmanned aerial vehicles (UAVs) enables early detection of numerous disasters. Efforts have been made to automate the monitoring of data from UAVs, with machine learning methods recently attracting significant interest. These solutions often face challenges with high computational costs and energy usage. Conventionally, data from UAVs are processed using cloud computing, where they are sent to the cloud for analysis. However, this method might not meet the real-time needs of disaster relief scenarios. In contrast, edge computing provides real-time processing at the site but still struggles with computational and energy efficiency issues. To overcome these obstacles and enhance resource utilization, this paper presents a convolutional neural network (CNN) model with an early exit mechanism designed for fire detection in UAVs. This model is implemented using TSMC 40 nm CMOS technology, which aids in hardware acceleration. Notably, the neural network has a modest parameter count of 11.2 k. In the hardware computation part, the CNN circuit completes fire detection in approximately 230,000 cycles. Power-gating techniques are also used to turn off inactive memory, contributing to reduced power consumption. The experimental results show that this neural network reaches a maximum accuracy of 81.49% in the hardware implementation stage. After automatic layout and routing, the CNN hardware accelerator can operate at 300 MHz, consuming 117 mW of power.

2.
Sensors (Basel) ; 23(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38067811

RESUMEN

In various industrial domains, machinery plays a pivotal role, with bearing failure standing out as the most prevalent cause of malfunction, contributing to approximately 41% to 44% of all operational breakdowns. To address this issue, this research employs a lightweight neural network, boasting a mere 8.69 K parameters, tailored for implementation on an FPGA (field-programmable gate array). By integrating an incremental network quantization approach and fixed-point operation techniques, substantial memory savings amounting to 63.49% are realized compared to conventional 32-bit floating-point operations. Moreover, when executed on an FPGA, this work facilitates real-time bearing condition detection at an impressive rate of 48,000 samples per second while operating on a minimal power budget of just 342 mW. Remarkably, this system achieves an accuracy level of 95.12%, showcasing its effectiveness in predictive maintenance and the prevention of costly machinery failures.

3.
Sensors (Basel) ; 23(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37447743

RESUMEN

This paper introduces a one-dimensional convolutional neural network (CNN) hardware accelerator. It is crafted to conduct real-time assessments of bearing conditions using economical hardware components, implemented on a field-programmable gate array evaluation platform, negating the necessity to transfer data to a cloud-based server. The adoption of the down-sampling technique augments the visible time span of the signal in an image, thereby enhancing the accuracy of the bearing condition diagnosis. Furthermore, the proposed method of quaternary quantization enhances precision and shrinks the memory demand for the neural network model by an impressive 89%. Provided that the current signal data sampling rate stands at 64 K samples/s, the proposed design can accomplish real-time fault diagnosis at a clock frequency of 100 MHz. Impressively, the response duration of the proposed CNN hardware system is a mere 0.28 s, with the fault diagnosis precision reaching a remarkable 96.37%.


Asunto(s)
Computadores , Redes Neurales de la Computación
4.
Artículo en Inglés | MEDLINE | ID: mdl-24110225

RESUMEN

In this paper, a high-resolution and one-cycle conversion time-to-digital converter (TDC) architecture with cell-based design for positron emission tomography (PET) applications is presented. The proposed TDC employs a cascade-stage structure to achieve high timing resolution and wide sampling range at the same time. Besides, based on the proposed two-level conversion structure, the proposed TDC not only can achieve single cycle latency and high speed of operation, but also have low circuit complexity as compared with conventional approaches. Simulation results show that operation frequency of the proposed TDC can be improved to 200 MHz with 50 ps resolution. In addition, the proposed TDC can be implemented with standard cells, making it easily portable to different processes and very suitable for biomedical chip applications.


Asunto(s)
Tomografía de Emisión de Positrones/instrumentación , Diseño de Equipo , Tomografía de Emisión de Positrones/métodos , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...