RESUMEN
Upregulation of MYC is a hallmark of cancer, wherein MYC drives oncogenic gene expression and elevates total RNA synthesis across cancer cell transcriptomes. Although this transcriptional anabolism fuels cancer growth and survival, the consequences and metabolic stresses induced by excess cellular RNA are poorly understood. Herein, we discover that RNA degradation and downstream ribonucleotide catabolism is a novel mechanism of MYC-induced cancer cell death. Combining genetics and metabolomics, we find that MYC increases RNA decay through the cytoplasmic exosome, resulting in the accumulation of cytotoxic RNA catabolites and reactive oxygen species. Notably, tumor-derived exosome mutations abrogate MYC-induced cell death, suggesting excess RNA decay may be toxic to human cancers. In agreement, purine salvage acts as a compensatory pathway that mitigates MYC-induced ribonucleotide catabolism, and inhibitors of purine salvage impair MYC+ tumor progression. Together, these data suggest that MYC-induced RNA decay is an oncogenic stress that can be exploited therapeutically. Significance: MYC is the most common oncogenic driver of poor-prognosis cancers but has been recalcitrant to therapeutic inhibition. We discovered a new vulnerability in MYC+ cancer where MYC induces cell death through excess RNA decay. Therapeutics that exacerbate downstream ribonucleotide catabolism provide a therapeutically tractable approach to TNBC (Triple-negative Breast Cancer) and other MYC-driven cancers.
Asunto(s)
Neoplasias de la Mama , Proteínas Proto-Oncogénicas c-myc , Estabilidad del ARN , Ribonucleótidos , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Ribonucleótidos/metabolismoRESUMEN
Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.
Asunto(s)
Antivirales/farmacología , Inmunidad/efectos de los fármacos , Empalmosomas/metabolismo , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Inmunidad Adaptativa/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Femenino , Amplificación de Genes/efectos de los fármacos , Humanos , Intrones/genética , Ratones , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas c-myc/metabolismo , Empalme del ARN/efectos de los fármacos , Empalme del ARN/genética , ARN Bicatenario/metabolismo , Transducción de Señal/efectos de los fármacos , Empalmosomas/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/genéticaRESUMEN
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer diagnosed in more than 200,000 women each year and is recalcitrant to targeted therapies. Although TNBCs harbor multiple hyperactive receptor tyrosine kinases (RTKs), RTK inhibitors have been largely ineffective in TNBC patients thus far. We developed a broadly effective therapeutic strategy for TNBC that is based on combined inhibition of receptors that share the negative regulator PTPN12. Previously, we and others identified the tyrosine phosphatase PTPN12 as a tumor suppressor that is frequently inactivated in TNBC. PTPN12 restrains several RTKs, suggesting that PTPN12 deficiency leads to aberrant activation of multiple RTKs and a co-dependency on these receptors. This in turn leads to the therapeutic hypothesis that PTPN12-deficient TNBCs may be responsive to combined RTK inhibition. However, the repertoire of RTKs that are restrained by PTPN12 in human cells has not been systematically explored. By methodically identifying the suite of RTK substrates (MET, PDGFRß, EGFR, and others) inhibited by PTPN12, we rationalized a combination RTK-inhibitor therapy that induced potent tumor regression across heterogeneous models of TNBC. Orthogonal approaches revealed that PTPN12 was recruited to and inhibited these receptors after ligand stimulation, thereby serving as a feedback mechanism to limit receptor signaling. Cancer-associated mutation of PTPN12 or reduced PTPN12 protein levels diminished this feedback mechanism, leading to aberrant activity of these receptors. Restoring PTPN12 protein levels restrained signaling from RTKs, including PDGFRß and MET, and impaired TNBC survival. In contrast with single agents, combined inhibitors targeting the PDGFRß and MET receptors induced the apoptosis in TNBC cells in vitro and in vivo. This therapeutic strategy resulted in tumor regressions in chemo-refractory patient-derived TNBC models. Notably, response correlated with PTPN12 deficiency, suggesting that impaired receptor feedback may establish a combined addiction to these proto-oncogenic receptors. Taken together, our data provide a rationale for combining RTK inhibitors in TNBC and other malignancies that lack receptor-activating mutations.
Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 12/metabolismo , Receptores de Superficie Celular/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Supervivencia Celular , Crizotinib/farmacología , Crizotinib/uso terapéutico , Femenino , Humanos , Ratones Desnudos , Mutación/genética , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 12/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Sunitinib/farmacología , Sunitinib/uso terapéutico , Neoplasias de la Mama Triple Negativas/enzimología , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
This corrects the article DOI: 10.1038/ncomms4214.
RESUMEN
The promyelocytic leukaemia (PML) protein controls multiple tumour suppressive functions and is downregulated in diverse types of human cancers through incompletely characterized post-translational mechanisms. Here we identify USP11 as a PML regulator by RNAi screening. USP11 deubiquitinates and stabilizes PML, thereby counteracting the functions of PML ubiquitin ligases RNF4 and the KLHL20-Cul3 (Cullin 3)-Roc1 complex. We find that USP11 is transcriptionally repressed through a Notch/Hey1-dependent mechanism, leading to PML destabilization. In human glioma, Hey1 upregulation correlates with USP11 and PML downregulation and with high-grade malignancy. The Notch/Hey1-induced downregulation of USP11 and PML not only confers multiple malignant characteristics of aggressive glioma, including proliferation, invasiveness and tumour growth in an orthotopic mouse model, but also potentiates self-renewal, tumour-forming capacity and therapeutic resistance of patient-derived glioma-initiating cells. Our study uncovers a PML degradation mechanism through Notch/Hey1-induced repression of the PML deubiquitinase USP11 and suggests an important role for this pathway in brain tumour pathogenesis.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Glioblastoma/metabolismo , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo , Tioléster Hidrolasas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Proteína de la Leucemia Promielocítica , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Metastasis is the major cause of poor prognosis in colorectal cancer (CRC), and increasing evidence supports the contribution of miRNAs to cancer progression. Here, we found that high expression of miR-103 and miR-107 (miR-103/107) was associated with metastasis potential of CRC cell lines and poor prognosis in patients with CRC. We showed that miR-103/107 targeted the known metastasis suppressors death-associated protein kinase (DAPK) and Krüppel-like factor 4 (KLF4) in CRC cells, resulting in increased cell motility and cell-matrix adhesion and decreased cell-cell adhesion and epithelial marker expression. miR-103/107 expression was increased in the presence of hypoxia, thereby potentiating DAPK and KLF4 downregulation and hypoxia-induced motility and invasiveness. In mouse models of CRC, miR-103/107 overexpression potentiated local invasion and liver metastasis effects, which were suppressed by reexpression of DAPK or KLF4. miR-103/107-mediated downregulation of DAPK and KLF4 also enabled the colonization of CRC cells at a metastatic site. Clinically, the signature of a miR-103/107 high, DAPK low, and KLF4 low expression profile correlated with the extent of lymph node and distant metastasis in patients with CRC and served as a prognostic marker for metastasis recurrence and poor survival. Our findings therefore indicate that miR-103/107-mediated repression of DAPK and KLF4 promotes metastasis in CRC, and this regulatory circuit may contribute in part to hypoxia-stimulated tumor metastasis. Strategies that disrupt this regulation might be developed to block CRC metastasis.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , MicroARNs/fisiología , Metástasis de la Neoplasia/genética , Animales , Línea Celular Tumoral , Movimiento Celular , Uniones Célula-Matriz/metabolismo , Neoplasias Colorrectales/mortalidad , Proteínas Quinasas Asociadas a Muerte Celular , Regulación hacia Abajo , Humanos , Factor 4 Similar a Kruppel , Masculino , Ratones , Ratones Desnudos , PronósticoRESUMEN
Tumor hypoxia is associated with disease progression and treatment failure, but the hypoxia signaling mechanism is not fully understood. Here, we show that KLHL20, a Cullin3 (Cul3) substrate adaptor induced by HIF-1, coordinates with the actions of CDK1/2 and Pin1 to mediate hypoxia-induced PML proteasomal degradation. Furthermore, this PML destruction pathway participates in a feedback mechanism to maximize HIF-1α induction, thereby potentiating multiple tumor hypoxia responses, including metabolic reprogramming, epithelial-mesenchymal transition, migration, tumor growth, angiogenesis, and chemoresistance. In human prostate cancer, overexpression of HIF-1α, KLHL20, and Pin1 correlates with PML down-regulation, and hyperactivation of the PML destruction pathway is associated with disease progression. Our study indicates that the KLHL20-mediated PML degradation and HIF-1α autoregulation play key roles in tumor progression.