Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 957, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200076

RESUMEN

The Ryukyu Islands of Japan are a biodiversity hotspot due to geographical and historical factors. Tricyrtis formosana is a perennial herbaceous plant that commonly found in Taiwan. But only a few populations have been identified in a limited habitat on Iriomote Island, while populations of unknown origin occur near human settlements in an area on the main island of Okinawa. To better understand these populations of the phylogenetic uniqueness and intrinsic vulnerability, we conducted comparative analyses including (1) phylogeny and population structure with MIG-seq data, (2) photosynthesis-related traits of plants grown under common conditions and (3) transcriptome analysis to detect deleterious variations. Results revealed that T. formosana was split into two clades by the congeners and that Iriomote and Okinawa populations independently derived from ancestral Taiwanese populations in each clade. Photosynthetic efficiency was lowest in the Iriomote population, followed by Okinawa and Taiwan. Transcriptome analysis showed that the Iriomote population accumulated more deleterious variations, suggesting intrinsic vulnerability. These results indicate that each T. formosana population in Japan is phylogenetically unique and has been independently dispersed from Taiwan, and that the Iriomote population presents a high conservation difficulty with a unique photosynthesis-related characteristic and a larger amount of deleterious variations.


Asunto(s)
Especies en Peligro de Extinción , Genética de Población , Liliaceae , Biodiversidad , Japón , Liliaceae/genética , Filogenia , Conservación de los Recursos Naturales , Fotosíntesis
2.
PLoS One ; 18(5): e0284650, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37195912

RESUMEN

Situated in the southern end of the Annamite Mountain Range, Langbiang Plateau is a major biodiversity hotspot of southern Vietnam known for high species diversity and endemicity. To achieve effective conservation, parts of the plateau were designated as the Langbiang Biosphere Reserve, an UNESCO World Network aiming to improve relationships between inhabitants and their environments. Amongst the rich endemic flora of the plateau are three gesneriads ascribed to Primulina, a calciphilous genus with high species diversity in the vast limestone karsts stretching from southern China to northern Vietnam. However, a recent phylogenetic study questioned the generic placement of the Langbiang Primulina, corroborating with observations on the geographical distribution, habitat preference, and phyllotaxy of the three species. Based on phylogenetic analyses of nuclear ITS and plastid trnL-F DNA sequences of a comprehensive sampling covering nearly all genera of the Old World Gesneriaceae, we demonstrate that the three Langbiang Primulina species form a fully supported clade distantly related to other Primulina. As this clade is biogeographically, ecologically, morphologically, and phylogenetically distinct worthy of generic recognition, we propose to name it Langbiangia gen. nov. to highlight the rich and unique biodiversity of the Langbiang Plateau. By means of this taxonomic endeavor, we are hoping to raise the conservation awareness of this biodiversity heritage of southern Vietnam and promote the importance of Langbiang Biosphere Reserve that is crucial for achieving action-oriented global targets of the post-2020 global biodiversity framework (GBF) of the UN Convention on Biological Diversity (CBD)-effective conservation and management of at least 30% of biodiverse terrestrial, inland water, and costal and marine areas by 2030-that has been agreed at the COP15 in Montréal in December 2022.


Asunto(s)
Biodiversidad , Lamiales , Filogenia , Vietnam , Ecosistema
3.
Cladistics ; 39(4): 249-272, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37079431

RESUMEN

Antrophyum is one of the largest genera of vittarioid ferns (Pteridaceae) and is most diverse in tropical Asia and the Pacific Islands, but also occurs in temperate Asia, Australia, tropical Africa and the Malagasy region. The only monographic study of Antrophyum was published more than a century ago and a modern assessment of its diversity is lacking. Here, we reconstructed a comprehensively sampled and robustly supported phylogeny for the genus based on four chloroplast markers using Bayesian inference, maximum likelihood and maximum parsimony analyses. We then explored the evolution of the genus from the perspectives of morphology, systematics and historical biogeography. We investigated nine critical morphological characters using a morphometric approach and reconstructed their evolution on the phylogeny. We describe four new species and provide new insight into species delimitation. We currently recognize 34 species for the genus and provide a key to identify them. The results of biogeographical analysis suggest that the distribution of extant species is largely shaped by both ancient and recent dispersal events.


Asunto(s)
Helechos , Pteridaceae , Helechos/genética , Teorema de Bayes , Filogenia , Asia
4.
Opt Express ; 30(14): 25842-25854, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237105

RESUMEN

A thermally bi-directionally tunable arrayed waveguide grating (TBDTAWG) is proposed and demonstrated on a silicon-on-insulator (SOI) platform. The device is composed of passive and active designs for realizations of an AWG and fine tuning of its filtering responses. Given that the required length difference between adjacent arrayed waveguides for the SOI platform is considerably short (∼3-5 µm) due to a high index contrast, an S-shaped architecture with a larger footprint instead of a rectangular one is employed in the AWG. Bi-directionally tunable functions, i.e., both red- and blue-shift tunable functions, can be achieved by using two triangular thermal-tuning regions with complementary phase distributions in the S-shaped architecture despite using only materials with positive thermo-optic coefficients, i.e., Si and SiO2. Measurement results illustrate that both red- or blue-shifted spectra can be achieved and a linear bi-directional shift-to-power ratio of ±30.5 nm/W as well as a wide tuning range of 8 nm can be obtained under an electrical voltage range of 0-2.5 V, showing an agreement between the measurement results and two-dimensional simulation results. This also shows the potential of the proposed TBDTAWG for automatically stabilizing the spectral responses of AWG-based (de)multiplexers for coarse or dense wavelength division multiplexing communication systems by using a feedback control circuit.

5.
Appl Opt ; 61(27): 8064-8071, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36255928

RESUMEN

A broadband and ultra-compact polarization splitter-rotator based on diagonally overlapped bi-layer architecture and an asymmetrical directional coupler is proposed on a silicon-on-insulator platform. By leveraging the structure over supermode theory, a 1-dB bandwidth of 220 nm, extinction ratio (ER) of <19dB, and cross talk (XT) of <-15.85dB within the span of 1400-1700 nm and coupling length of 4.62 µm are achieved. In addition, TM0-TE0 conversion loss of ∼0.19dB, ER of 35.88 dB, and XT of -30.46dB can be obtained at 1550 nm. The fabrication tolerances are also analyzed, indicating that the insertion losses remain below 1 dB over 1460-1620 nm in terms of width errors and layer-to-layer misalignments within ±10nm. The results show that the proposed device is very suitable to utilize between fibers and for polarization diversity of on-chip systems for broadband operation as well as ultra-compact integration.

6.
Sci Rep ; 12(1): 15800, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36138079

RESUMEN

Petrocodon and Primulina are two characteristic genera of Gesneriaceae that exhibit remarkable species and floral diversity, and high endemism across the Sino-Vietnamese Limestone Karsts. To better understand the evolution of limestone gesneriad plastomes, we report nine complete plastomes of seven Primulina and two Petrocodon which have never been assembled before. The newly generated plastomes range from 152,323 to 153,786 bp in size and display a typical quadripartite structure. To further explore the plastome evolution across Gesneriaceae, we assembled five additional plastomes from public reads data and incorporated 38 complete Gesneriaceae plastomes available online into comparative and phylogenomic analyses. The comparison of 52 Gesneriaceae plastomes reveals that not only Primulina and Petrocodon but all gesneriad genera analyzed are highly conserved in genome size, genome structure, gene contents, IR boundary configurations, and codon usage bias. Additionally, sliding window analyses were implemented across alignments of Primulina and Petrocodon for identifying highly variable regions, providing informative markers for future studies. Meanwhile, the SSRs and long repeats of Gesneriaceae plastomes were characterized, serving as useful data in studying population and repetitive sequence evolutions. The results of plastome phylogenetics represent a preliminary but highly resolved maternal backbone genealogy of Primulina and the Old World subtribes of Gesneriaceae.


Asunto(s)
Evolución Molecular , Lamiales , Carbonato de Calcio , Lamiales/genética , Filogenia , Plastidios/genética
7.
PLoS One ; 17(9): e0272680, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36178903

RESUMEN

'Breadfruit' is a common tree species in Taiwan. In the indigenous Austronesian Amis culture of eastern Taiwan, 'breadfruit' is known as Pacilo, and its fruits are consumed as food. On Lanyu (Botel Tobago) where the indigenous Yami people live, 'breadfruit' is called Cipoho and used for constructing houses and plank-boats. Elsewhere in Taiwan, 'breadfruit' is also a common ornamental tree. As an essential component of traditional Yami culture, Cipoho has long been assumed to have been transported from the Batanes Island of the Philippines to Lanyu. As such, it represents a commensal species that potentially can be used to test the hypothesis of the northward Austronesian migration 'into' Taiwan. However, recent phylogenomic studies using target enrichment show that Taiwanese 'breadfruit' might not be the same as the Pacific breadfruit (Artocarpus altilis), which was domesticated in Oceania and widely cultivated throughout the tropics. To resolve persistent misidentification of this culturally and economically important tree species of Taiwan, we sampled 36 trees of Taiwanese Artocarpus and used the Moraceae probe set to enrich 529 nuclear genes. Along with 28 archived Artocarpus sequence datasets (representing a dozen taxa from all subgenera), phylogenomic analyses showed that all Taiwanese 'breadfruit' samples, together with a cultivated ornamental tree from Hawaii, form a fully supported clade within the A. treculianus complex, which is composed only of endemic Philippine species. Morphologically, the Taiwanese 'breadfruit' matches the characters of A. treculianus. Within the Taiwanese samples of A. treculianus, Amis samples form a fully supported clade derived from within the paraphyletic grade composed of Yami samples, suggesting a Lanyu origin. Results of our target enrichment phylogenomics are consistent with the scenario that Cipoho was transported northward from the Philippines to Lanyu by Yami ancestors, though the possibility that A. treculianus is native to Lanyu cannot be ruled out completely.


Asunto(s)
Artocarpus , Artocarpus/genética , Humanos , Filipinas , Filogenia , Almidón , Taiwán
8.
Genome Res ; 32(5): 864-877, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35361625

RESUMEN

The ecology and genetic diversity of the model yeast Saccharomyces cerevisiae before human domestication remain poorly understood. Taiwan is regarded as part of this yeast's geographic birthplace, where the most divergent natural lineage was discovered. Here, we extensively sampled the broadleaf forests across this continental island to probe the ancestral species' diversity. We found that S. cerevisiae is distributed ubiquitously at low abundance in the forests. Whole-genome sequencing of 121 isolates revealed nine distinct lineages that diverged from Asian lineages during the Pleistocene, when a transient continental shelf land bridge connected Taiwan to other major landmasses. Three lineages are endemic to Taiwan and six are widespread in Asia, making this region a focal biodiversity hotspot. Both ancient and recent admixture events were detected between the natural lineages, and a genetic ancestry component associated with isolates from fruits was detected in most admixed isolates. Collectively, Taiwanese isolates harbor genetic diversity comparable to that of the whole Asia continent, and different lineages have coexisted at a fine spatial scale even on the same tree. Patterns of variations within each lineage revealed that S. cerevisiae is highly clonal and predominantly reproduces asexually in nature. We identified different selection patterns shaping the coding sequences of natural lineages and found fewer gene family expansion and contractions that contrast with domesticated lineages. This study establishes that S. cerevisiae has rich natural diversity sheltered from human influences, making it a powerful model system in microbial ecology.


Asunto(s)
Biodiversidad , Saccharomyces cerevisiae , Asia , Humanos , Filogenia , Saccharomyces cerevisiae/genética , Taiwán , Secuenciación Completa del Genoma
10.
J Plant Res ; 135(2): 203-220, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35080694

RESUMEN

Species of Broussonetia have been essential in the development of papermaking technology. In Japan and Korea, a hybrid between B. monoica and B. papyrifera (= B. × kazinoki) known as kozo and daknamu is still the major source of raw materials for making traditional paper washi and hanji, respectively. Despite their cultural and practical significance, however, the origin and taxonomy of kozo and daknamu remain controversial. Additionally, the long-held generic concept of Broussonetia s.l., which included Sect. Allaeanthus and Sect. Broussonetia, was challenged as phylogenetic analyses showed Malaisia is sister to the latter section. To re-examine the taxonomic proposition that recognizes Allaeanthus, Broussonetia, and Malaisia (i.e., Broussonetia alliance), plastome and nuclear ribosomal DNA (nrDNA) sequences of six species of the alliance were assembled. Characterized by the canonical quadripartite structure, genome alignments and contents of the six plastomes (160,121-162,594 bp) are highly conserved, except for the pseudogenization and/or loss of the rpl22 gene. Relationships of the Broussonetia alliance are identical between plastome and nrDNA trees, supporting the maintenance of Malaisia and the resurrection of Allaeanthus. The phylogenomic relationships also indicate that the monoecy in B. monoica is a derived state, possibly resulting from hybridization between the dioecious B. kaempferi (♀) and B. papyrifera (♂). Based on the hypervariable ndhF-rpl32 intergenic spacer selected by sliding window analysis, phylogeographic analysis indicates that B. monoica is the sole maternal parent of B. × kazinoki and that daknamu carries multiple haplotypes, while only one haplotype was detected in kozo. Because hybridizations between B. monoica and B. papyrifera are unidirectional and have occurred rarely in nature, our data suggest that daknamu might have originated via deliberate hybrid breeding selected for making hanji in Korea. On the contrary, kozo appears to have a single origin and the possibility of a Korean origin cannot be ruled out.


Asunto(s)
Broussonetia , Moraceae , Broussonetia/química , Broussonetia/genética , Filogenia , Filogeografía , Fitomejoramiento
11.
Mol Phylogenet Evol ; 166: 107329, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678410

RESUMEN

The papilionoid legume genus Ormosia (Fabaceae) comprises about 150 species of trees and exhibits a striking disjunct geographical distribution between the New World- and Asian and Australasian wet tropics and subtropics. Modern classifications of Ormosia are not grounded on a well-substantiated phylogenetic hypothesis and have been limited to just portions of the geographical range of the genus. The lack of an evolutionarily-based foundation for systematic studies has hindered taxonomic work on the genus and prevented the testing of biogeographical hypotheses related to the origin of the Old World/New World disjunction and the individual dispersal histories within both areas. Here, we present the most comprehensively sampled molecular phylogeny of Ormosia to date, based on analysis of both nuclear (ITS) and plastid (matK and trnL-F) DNA sequences from 82 species of the genus. Phylogenetically-based divergence times and ancestral range estimations are employed to test hypotheses related to the biogeographical history of the genus. We find strong support for the monophyly of Ormosia and the grouping of all sampled Asian species of the genus into two comparably sized clades, one of which is sister to another large clade containing all sampled New World species. Within the New World clade, additional resolution supports the grouping of most species into three mutually exclusive subordinate clades. The remaining New World species form a fourth well-supported clade in the analyses of plastid sequences, but that result is contradicted by the analysis of ITS. With few exceptions the supported clades have not been previously recognized as taxonomic groups. The biogeographical analysis suggests that Ormosia originated in continental Asia and dispersed to the New World in the Oligocene or early Miocene via long-distance trans-oceanic dispersal. We reject the hypothesis that the inter-hemispheric disjunction in Ormosia resulted from fragmentation of a more continuous "Boreotropical" distribution since the dispersal post-dates Eocene climatic maxima. Both of the Old World clades appear to have originated in mainland Asia and subsequently dispersed into the Malay Archipelago and beyond, at least two lineages dispersing across Wallace's Line as far as the Solomon Islands and northeastern Australia. In the New World, the major clades all originated in Amazonia. Dispersal from Amazonia into peripheral areas in Central America, the Caribbean, and Extra-Amazonian Brazil occurred multiple times over varying time scales, the earliest beginning in the late Miocene. In a few cases, these dispersals were followed by local diversification, but not by reverse migration back to Amazonia. Within each of the two main areas of distribution, multiple modest bouts of oceanic dispersal were required to achieve the modern distributions.


Asunto(s)
Fabaceae , Teorema de Bayes , Evolución Biológica , Fabaceae/genética , Filogenia , Filogeografía , Plastidios/genética
12.
Plant Environ Interact ; 3(4): 141-154, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37283607

RESUMEN

Stomata are a pivotal adaptation of land plants and control gas exchange. While most plants present solitary stomata, some plant species experiencing chronic water deficiency display clustered stomata on their epidermis; for instance, limestone-grown begonias. Moreover, the membrane receptor TOO MANY MOUTHS (TMM) plays a major role in spacing stomata on the epidermis in Arabidopsis, but the function of its Begonia orthologs is unknown. We used two Asian begonias, Begonia formosana (single stomata) and B. hernandioides (clustered stomata), to explore the physiological function of stomatal clustering. We also introduced the Begonia TMMs into Arabidopsis tmm mutants to study the function of Begonia TMMs. B. hernandioides showed higher water use efficiency under high light intensity, smaller stomata, and faster pore opening than B. formosana. The short distance between stomata in a cluster may facilitate cell-to-cell interactions to achieve synchronicity in stomatal movement. Begonia TMMs function similarly to Arabidopsis TMM to inhibit stomatal formation, although complementation by TMM from the clustered species was only partial. Stomatal clustering in begonias may represent a developmental strategy to build small and closer stomata to achieve fast responses to light which provides tight support between stomatal development and environmental adaption.

13.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34039710

RESUMEN

Shaping global water and carbon cycles, plants lift water from roots to leaves through xylem conduits. The importance of xylem water conduction makes it crucial to understand how natural selection deploys conduit diameters within and across plants. Wider conduits transport more water but are likely more vulnerable to conduction-blocking gas embolisms and cost more for a plant to build, a tension necessarily shaping xylem conduit diameters along plant stems. We build on this expectation to present the Widened Pipe Model (WPM) of plant hydraulic evolution, testing it against a global dataset. The WPM predicts that xylem conduits should be narrowest at the stem tips, widening quickly before plateauing toward the stem base. This universal profile emerges from Pareto modeling of a trade-off between just two competing vectors of natural selection: one favoring rapid widening of conduits tip to base, minimizing hydraulic resistance, and another favoring slow widening of conduits, minimizing carbon cost and embolism risk. Our data spanning terrestrial plant orders, life forms, habitats, and sizes conform closely to WPM predictions. The WPM highlights carbon economy as a powerful vector of natural selection shaping plant function. It further implies that factors that cause resistance in plant conductive systems, such as conduit pit membrane resistance, should scale in exact harmony with tip-to-base conduit widening. Furthermore, the WPM implies that alterations in the environments of individual plants should lead to changes in plant height, for example, shedding terminal branches and resprouting at lower height under drier climates, thus achieving narrower and potentially more embolism-resistant conduits.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Agua/fisiología , Xilema/anatomía & histología
14.
Front Plant Sci ; 12: 720171, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069611

RESUMEN

The early-diverging eudicot family Berberidaceae is composed of a morphologically diverse assemblage of disjunctly distributed genera long praised for their great horticultural and medicinal values. However, despite century-long studies, generic delimitation of Berberidaceae remains controversial and its tribal classification has never been formally proposed under a rigorous phylogenetic context. Currently, the number of accepted genera in Berberidaceae ranges consecutively from 13 to 19, depending on whether to define Berberis, Jeffersonia, and Podophyllum broadly, or to segregate these three genera further and recognize Alloberberis, Mahonia, and Moranothamnus, Plagiorhegma, and Dysosma, Diphylleia, and Sinopodophyllum, respectively. To resolve Berberidaceae's taxonomic disputes, we newly assembled 23 plastomes and, together with 85 plastomes from the GenBank, completed the generic sampling of the family. With 4 problematic and 14 redundant plastome sequences excluded, robust phylogenomic relationships were reconstructed based on 93 plastomes representing all 19 genera of Berberidaceae and three outgroups. Maximum likelihood phylogenomic relationships corroborated with divergence time estimation support the recognition of three subfamilies Berberidoideae, Nandinoideae, and Podophylloideae, with tribes Berberideae and Ranzanieae, Leonticeae and Nandineae, and Podophylleae, Achlydeae, Bongardieae tr. nov., Epimedieae, and Jeffersonieae tr. nov. in the former three subfamilies, respectively. By applying specifically stated criteria, our phylogenomic data also support the classification of 19 genera, recognizing Alloberberis, Mahonia, and Moranothamnus, Plagiorhegma, and Diphylleia, Dysosma, and Sinopodophyllum that are morphologically and evolutionarily distinct from Berberis, Jeffersonia, and Podophyllum, respectively. Comparison of plastome structures across Berberidaceae confirms inverted repeat expansion in the tribe Berberideae and reveals substantial length variation in accD gene caused by repeated sequences in Berberidoideae. Comparison of plastome tree with previous studies and nuclear ribosomal DNA (nrDNA) phylogeny also reveals considerable conflicts at different phylogenetic levels, suggesting that incomplete lineage sorting and/or hybridization had occurred throughout the evolutionary history of Berberidaceae and that Alloberberis and Moranothamnus could have resulted from reciprocal hybridization between Berberis and Mahonia in ancient times prior to the radiations of the latter two genera.

15.
Bot Stud ; 61(1): 21, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32734318

RESUMEN

BACKGROUND: With currently 1980 described species, the mega-diverse Begonia is now perhaps the 5th largest flowering plant genus, expanding rapidly from ca. 900 species in 1997 to its current size in merely two decades. In continuation of our studies of Asian Begonia, we report six additional new species from Guangxi, the region/province harboring the second richest Begonia flora of China. RESULTS: Based on morphological and molecular data, the new species B. aurora belongs to Begonia sect. Platycentrum, while the other five new species (viz. B. larvata, B. longiornithophylla, B. lui, B. scabrifolia, and B. zhuoyuniae) are members of Sect. Coelocentrum. Somatic chromosome numbers of B. longiornithophylla and B. zhuoyuniae at metaphase were counted as 2n = 30, consistent with previously reports for Sect. Coelocentrum. CONCLUSIONS: With the addition of the six new species, the total number of Begonia species in Guangxi increases from 86 to 92. Detailed description, line drawings, and color plates are provided to aid in identification.

16.
Food Chem ; 333: 127458, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32673952

RESUMEN

Artemisia species are aromatic herbs used as food and/or ethnomedicine worldwide; however, the use of these plants is often impeded by misidentification. Here, molecular and chemotaxonomic approaches were combined to assist in the morphology-based authentication of Artemisia species, and Artemisia indica and Artemisia argyi were identified. The plant extracts and compounds obtained from these species, 1,8-cineole, carveol, α-elemene, α-farnesene, methyl linolenate, diisooctyl phthalate inhibited the growth of food-borne harmful bacteria. Mechanistic studies showed that the extract and active compounds of A. indica killed Gram-negative and -positive bacteria via destruction of the bacterial membrane. Finally, in vivo data demonstrated that A. indica protected against bacterial infection in mice as evidenced by survival rate, bacterial load in organs, gut pathology, diarrhea, body weight, food consumption, stool weight, and pathology score. A. indica and its active compounds have potential for use as food supplements for food-borne bacterial diseases and thus improve human health.


Asunto(s)
Antibacterianos/farmacología , Artemisia/química , Fitoquímicos/análisis , Extractos Vegetales/farmacología , Animales , Antibacterianos/química , Carga Bacteriana , Diarrea/tratamiento farmacológico , Diarrea/microbiología , Femenino , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Plantas Medicinales/química , Intoxicación Alimentaria por Salmonella/tratamiento farmacológico , Intoxicación Alimentaria por Salmonella/mortalidad , Taiwán
17.
Bot Stud ; 61(1): 14, 2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32333228

RESUMEN

Ching-I Peng, the most prolific and internationally recognized Taiwanese plant taxonomist of his generation, passed away on May 1, 2018. Dr. Peng was an eminent worker on the taxonomy of East Asian plants and the genus Ludwigia, and the foremost expert on Asian Begonia. He served as associate editor, co-editor in chief, and editor-in-chief of Botanical Studies and its predecessor Botanical Bulletin of Academia Sinica during the period 1992-2016. He gathered over 25,000 plant specimens, name 121 plant taxa, and has left a remarkable legacy of literature, collaborations and collections. This article summarizes Dr. Peng's academic career and commemorates his enduring contribution.

18.
Bot Stud ; 60(1): 20, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31493093

RESUMEN

BACKGROUND: Sino-Vietnamese limestone karsts (SVLK) are a biodiversity hotspot rich in endemic plant species associated with caves and cave-like microhabitats. Based on phylogenetic studies of Begonia sect. Coelocentrum, a species-rich and characteristic SVLK clade, geographic isolation caused by extensive and continuous karstification was proposed as the major driving force triggering population diversification and geographic speciation. To test this proposition, population genetics and phylogeography of Begonia luzhaiensis were investigated using EST-SSR markers and the chloroplast trnC-ycf6 intergenic spacer. RESULTS: F statistics, Bayesian clustering analysis, AMOVA, and PCoA of both data sets all indicated substantial population differentiation and significant isolation by distance. Nested clade phylogeographic analyses inferred that historical fragmentations have been prominent, congruent with Guangxi's geohistory of karstification as well as suggesting a mountain chain in northeastern Guangxi could have also acted as a major geographic barrier. A Bayesian skyline plot (BSP) indicated a slight decline in effective population size at 75,000 years ago (75 Kya), coinciding with the last glacial period during which the increased aridity in East Asia had retarded karstification, negatively affecting the populations of B. luzhaiensis. However, BSP detected a continuous and further population decline until the present time even though summer monsoons have resumed since the end of the last glacial maximum. CONCLUSIONS: The microevolution patterns of B. luzhaiensis support that limited gene flow would have greatly enhanced the effects of random genetic drift and has been a major factor promoting diversification in Begonia, highly congruent with previous proposition. Based our study, we further propose that the arrival of Paleolithic Homo sapiens whose activities centered around limestone caves could have had further impacts on the populations of B. luzhaiensis, resulting in additional population decline. Further habitat destruction could have resulted from the transition from hunter gathering to food-producing societies ca. 20-10 Kya and the development of agriculture ca. 10 Kya in South China. Implications of the current study for SVLK plant conservation are also discussed.

19.
Bot Stud ; 60(1): 18, 2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31468230

RESUMEN

BACKGROUND: The Gesneriaceae genus Chiritopsis, confined almost exclusively to cave or cave-like microhabitats of limestone karsts of southern China, was described to distinguish it from Chirita by much smaller flowers and generally miniature plant sizes in the former genus. However, molecular phylogenetic analyses showed that Chiritopsis is polyphyletic and its species delimitation has been problematic. To understand how many times Chiritopsis-like species have evolved from within the recircumscribed Primulina and to further clarify their species identification, we sampled all but two recently described species of Chiritopsis-like Primulina and reconstructed their phylogenetic relationship based on DNA sequences of nuclear ITS and chloroplast trnL-F and trnH-psbA. RESULTS: With 182 accessions of 165 taxa of Primulina sampled, our analyses placed the 40 accessions of 25 taxa of Chiritopsis-like Primulina in 17 unrelated positions, indicating at least 17 independent origins of the traits associated with caves or cave-like microhabitats. Of the 17 clades containing Chiritopsis-like Primulina, Clade 1 is composed of P. bipinnatifida, P. cangwuensis, P. jianghuaensis, P. lingchuanensis, and P. zhoui, as well as additional samples that show variable and overlapping morphology in leaf shapes. Clade 10 includes P. cordifolia, P. huangii, and P. repanda, while Primulina repanda var. guilinensis is not placed within Clade 10. Primulina glandulosa var. yangshuoensis is not placed in the same clade of P. glandulosa. CONCLUSIONS: Based on our data, P. cangwuensis, P. jianghuaensis, and P. lingchuanensis are proposed to synonymize under P. bipinnatifida, with P. zhoui treated as a variety of P. bipinnatifida. Primulina repanda var. guilinensis is transferred as P. subulata var. guilinensis comb. nov. and Primulina pseudoglandulosa nom. nov. is proposed for P. glandulosa var. yangshuoensis. One new species is named P. chingipengii to honor the late Dr. Ching-I Peng (1950-2018).

20.
PLoS One ; 14(6): e0217107, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31216291

RESUMEN

Paper mulberry, Broussonetia papyrifera (L.) L'Hér. ex Vent. (Moraceae), a dioecious species, was transported by humans from Taiwan to the islands of Remote Oceania. Its introduction and cultivation in Remote Oceania was intentional due to its cultural importance as a fiber source for barkcloth textiles. The aim of this study was to explore the genetic diversity and structure of paper mulberry populations within Remote Oceania in order to infer dispersal patterns that may reflect past human interaction among island groups. We present the integrated analysis of 380 samples (313 contemporary and 67 herbarium specimens) collected in Near and Remote Oceania. Genetic characterization was based on a set of ten microsatellites developed for B. papyrifera and complemented with the analysis of the ribosomal internal transcribed spacer ITS-1 sequence, a sex marker and the chloroplast ndhF-rpl32 intergenic spacer. Microsatellite data identify a total of 64 genotypes, despite this being a clonally propagated crop, and show three major dispersal hubs within Remote Oceania, centered on the islands of Fiji, Tonga, and Pitcairn. Of 64 genotypes identified, 55 correspond to genotypes associated to female-sexed plants that probably descend from plants introduced by the prehistoric Austronesian-speaking voyagers. The ratio of accessions to genotypes between herbarium and contemporary samples, suggests recent loss of genetic diversity. In addition to the chloroplast haplotypes described previously, we detected two new haplotypes within Remote Oceania both originating in Taiwan. This is the first study of a commensal species to show genetic structuring within Remote Oceania. In spite of the genetic bottleneck, the presence of only one sex, a timespan of less than 5000 years, and asexual propagation of this crop in Remote Oceania, we detect genetic diversity and regional structuring. These observations suggest specific migration routes between island groups within Remote Oceania.


Asunto(s)
Broussonetia/genética , Broussonetia/fisiología , Actividades Humanas , Dispersión de las Plantas , ADN Ribosómico/genética , Variación Genética , Haplotipos , Humanos , Oceanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA