Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Cancers (Basel) ; 16(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473313

RESUMEN

Tumor cells gain advantages in growth and survival by acquiring genotypic and phenotypic heterogeneity. Interactions with bystander cells in the tumor microenvironment contribute to the progression of heterogeneity. We have shown that fusion between tumor and bystander cells is one form of interaction, and that tumor-bystander cell fusion has contrasting effects. By trapping fusion hybrids in the heterokaryon or synkaryon state, tumor-bystander cell fusion prevents the progression of heterogeneity. However, if trapping fails, fusion hybrids will resume replication to form derivative clones with diverse genomic makeups and behavioral phenotypes. To determine the characteristics of bystander cells that influence the fate of fusion hybrids, we co-cultured prostate mesenchymal stromal cell lines and their spontaneously transformed sublines with LNCaP as well as HPE-15 prostate cancer cells. Subclones derived from cancer-stromal fusion hybrids were examined for genotypic and phenotypic diversifications. Both stromal cell lines were capable of fusing with cancer cells, but only fusion hybrids with the transformed stromal subline generated large numbers of derivative subclones. Each subclone had distinct cell morphologies and growth behaviors and was detected with complete genomic hybridization. The health conditions of the bystander cell compartment play a crucial role in the progression of tumor cell heterogeneity.

2.
BMC Cancer ; 23(1): 499, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268911

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer and is notorious for its resistance to both chemotherapy and small-molecule inhibitor targeted therapies. Subcellular targeted cancer therapy may thwart the resistance to produce a substantial effect. METHODS: We tested whether the resistance can be circumvented by subcellular targeted cancer therapy with DZ-CIS, which is a chemical conjugate of the tumor-cell specific heptamethine carbocyanine dye (HMCD) with cisplatin (CIS), a chemotherapeutic drug with limited use in ccRCC treatment because of frequent renal toxicity. RESULTS: DZ-CIS displayed cytocidal effects on Caki-1, 786-O, ACHN, and SN12C human ccRCC cell lines and mouse Renca cells in a dose-dependent manner and inhibited ACHN and Renca tumor formation in experimental mouse models. Noticeably, in tumor-bearing mice, repeated DZ-CIS use did not cause renal toxicity, in contrast to the CIS-treated control animals. In ccRCC tumors, DZ-CIS treatment inhibited proliferation markers but induced cell death marker levels. In addition, DZ-CIS at half maximal inhibitory concentration (IC50) sensitized Caki-1 cells to small-molecule mTOR inhibitors. Mechanistically, DZ-CIS selectively accumulated in ccRCC cells' subcellular organelles, where it damages the structure and function of mitochondria, leading to cytochrome C release, caspase activation, and apoptotic cancer cell death. CONCLUSIONS: Results from this study strongly suggest DZ-CIS be tested as a safe and effective subcellular targeted cancer therapy.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Animales , Ratones , Carcinoma de Células Renales/patología , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias Renales/patología , Apoptosis , Muerte Celular , Línea Celular Tumoral , Proliferación Celular
3.
Clin Transl Med ; 12(8): e978, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35908276

RESUMEN

BACKGROUND: Lineage plasticity in prostate cancer (PCa) has emerged as an important mechanism leading to the onset of therapy- and castration-resistant PCa (t-CRPC), which is closely associated with cancer stem cell (CSC) activity. This study is to identify critical driver(s) with mechanism of action and explore new targeting strategy. METHODS: Various PCa cell lines with different genetic manipulations were subjected to in vitro prostasphere assay, cell viability assay and in vivo stemness potential. In addition, bioinformatic analyses such as Ingenuity pathway and Gene Set Enrichment Analysis were carried out to determine clinical relevance. The in vivo anti-tumour activity of JAK or STAT1 inhibitors was examined in clinically relevant t-CRPC model. RESULTS: We demonstrated the role of interferon-related signalling pathway in promoting PCa stemness, which correlated with significant elevation of interferon related DNA damage resistance signature genes in metastatic PCa. Inhibition of JAK-STAT1 signalling suppresses the in vitro and in vivo CSC capabilities. Mechanistically, IFIT5, a unique downstream effector of JAK-STAT1 pathway, can facilitate the acquisition of stemness properties in PCa by accelerating the turnover of specific microRNAs (such as miR-128 and -101) that can target several CSC genes (such as BMI1, NANOG, and SOX2). Consistently, knocking down IFIT5 in t-CRPC cell can significantly reduce in vitro prostasphere formation as well as decrease in vivo tumour initiating capability. CONCLUSIONS: This study provides a critical role of STAT1-IFIT5 in the acquisition of PCSC and highlights clinical translation of JAK or STAT1 inhibitors to prevent the outgrowth of t-CRPC.


Asunto(s)
MicroARNs , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Interferones , Quinasas Janus/metabolismo , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Factores de Transcripción STAT/metabolismo , Transducción de Señal
4.
Clin Transl Med ; 12(2): e695, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35184376

RESUMEN

BACKGROUND: Neuroendocrine prostate cancer (NEPC) is often diagnosed as a sub-type from the castration-resistant prostate cancer (CRPC) recurred from the second generation of anti-androgen treatment and is a rapidly progressive fatal disease. The molecular mechanisms underlying the trans-differentiation from CRPC to NEPC are not fully characterized, which hampers the development of effective targeted therapy. METHODS: Bioinformatic analyses were conducted to determine the clinical correlation of sphingosine kinase 1 (SphK1) in CRPC progression. To investigate the transcriptional regulation SphK1 and neuroendocrine (NE) transcription factor genes, both chromosome immunoprecipitation and luciferase reporter gene assays were performed. To demonstrate the role of SphK1 in NEPC development, neurosphere assay was carried out along with several biomarkers determined by quantitative PCR and western blot. Furthermore, in vivo NEPC xenograft models and patient-derived xenograft (PDX) model were employed to determine the effect of SphK1 inhibitors and target validation. RESULTS: Significant prevalence of SphK1 in NEPC development is observed from clinical datasets. SphK1 is transcriptionally repressed by androgen receptor-RE1-silencing transcription factor (REST) complex. Furthermore, sphingosine 1-phosphate produced by SphK1 can modulate REST protein turnover via MAPK signaling pathway. Also, decreased REST protein levels enhance the expression of NE markers in CRPC, enabling the transition to NEPC. Finally, specific SphK1 inhibitors can effectively inhibit the growth of NEPC tumors and block the REST protein degradation in PDX. CONCLUSIONS: SphK1 plays a central role in NEPC development, which offers a new target for this lethal cancer using clinically approved SphK1 inhibitors.


Asunto(s)
Carcinoma Neuroendocrino/etiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/efectos adversos , Neoplasias de la Próstata/etiología , Carcinoma Neuroendocrino/genética , Humanos , Masculino , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/estadística & datos numéricos , Sistemas Neurosecretores/anomalías , Sistemas Neurosecretores/fisiopatología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
5.
Breast Cancer Res ; 24(1): 7, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35078507

RESUMEN

BACKGROUND: Keratins (KRTs) are intermediate filament proteins that interact with multiple regulatory proteins to initiate signaling cascades. Keratin 13 (KRT13) plays an important role in breast cancer progression and metastasis. The objective of this study is to elucidate the mechanism by which KRT13 promotes breast cancer growth and metastasis. METHODS: The function and mechanisms of KRT13 in breast cancer progression and metastasis were assessed by overexpression and knockdown followed by examination of altered behaviors in breast cancer cells and in xenograft tumor formation in mouse mammary fat pad. Human breast cancer specimens were examined by immunohistochemistry and multiplexed quantum dot labeling analysis to correlate KRT13 expression to breast cancer progression and metastasis. RESULTS: KRT13-overexpressing MCF7 cells displayed increased proliferation, invasion, migration and in vivo tumor growth and metastasis to bone and lung. Conversely, KRT13 knockdown inhibited the aggressive behaviors of HCC1954 cells. At the molecular level, KRT13 directly interacted with plakoglobin (PG, γ-catenin) to form complexes with desmoplakin (DSP). This complex interfered with PG expression and nuclear translocation and abrogated PG-mediated suppression of c-Myc expression, while the KRT13/PG/c-Myc signaling pathway increased epithelial to mesenchymal transition and stem cell-like phenotype. KRT13 expression in 58 human breast cancer tissues was up-regulated especially at the invasive front and in metastatic specimens (12/18) (p < 0.05). KRT13 up-regulation in primary breast cancer was associated with decreased overall patient survival. CONCLUSIONS: This study reveals that KRT13 promotes breast cancer cell growth and metastasis via a plakoglobin/c-Myc pathway. Our findings reveal a potential novel pathway for therapeutic targeting of breast cancer progression and metastasis.


Asunto(s)
Neoplasias de la Mama , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Queratina-13/genética , Queratina-13/metabolismo , Ratones , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas c-myc , Transducción de Señal , gamma Catenina/genética , gamma Catenina/metabolismo
6.
Adv Ther (Weinh) ; 5(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36590644

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a disease with no effective therapeutics. We have developed a novel targeted therapy drug consisting of a tumor-targeting ligand, near-infrared (NIR) organic heptamethine carbocyanine dye (HMCD), and HMG-CoA inhibitor simvastatin (SIM), and assessed its efficacy in PDAC. PDAC cell specific targeting of DZ-SIM was measured by determining the fluorescence in cells and animals. Mitochondrial bioenergetics and functions were measured by Seahorse and flow cytometry, respectively. Apoptosis was assessed by DNA fragmentation, AnnexinV/Propidium Iodide staining, and TUNEL. Markers of cell invasion, epithelial-to-mesenchymal transition, and cancer stemness were measured. The effect of DZ-SIM on survival, tumor growth and metastasis was measured in the Krasþ/LSLG12D;Trp53þ/LSLR172H;Pdx-1-Cre (KPC) transgenic mice and in syngeneic and subcutaneous PDAC models. NIR fluorescence imaging showed specific localization of DZ-SIM to cancer, but not to normal cells and tissues. DZ-SIM significantly inhibited tumor growth and re-sensitized therapeutically resistant PDAC cells to conventional therapies. DZ-SIM killed cancer cells through unique pathways involving decreasing mitochondrial bioenergetics, including oxygen consumption and ATP production, and increasing ROS production. Mitochondrial depletion prevented the effect of DZ-SIM. Administration of DZ-SIM in 3 PDAC animal models resulted in a marked increase in survival and a decrease in tumor growth and metastasis.

7.
Mol Cancer Ther ; 20(12): 2527-2538, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34583981

RESUMEN

Cisplatin and tyrosine kinase inhibitors (TKI) are recommended to treat non-small cell lung cancer (NSCLC). However, ubiquitously acquired drug resistance in patients with NSCLC diminishes their therapeutic efficacy. Strategies for overcoming cisplatin and TKI resistance are an unmet medical need. We previously described a group of near-infrared heptamethine carbocyanine fluorescent dyes, referred to as DZ, with tumor-homing properties via differentially expressed organic anion-transporting polypeptides on cancer cells. This group of organic dyes can deliver therapeutic payloads specifically to tumor cells in the form of a chemical conjugate. We synthesized DZ-simvastatin (DZ-SIM) initially to target cholesterol biosynthesis in lung cancer cells. DZ-SIM killed both cisplatin-sensitive and cisplatin-resistant as well as EGFR-TKI-sensitive and EGFR-TKI-resistant lung cancer cells. This conjugate specifically accumulated in and effectively inhibited the growth of xenograft tumors formed by NSCLC cells resistant to first-generation (H1650) and third-generation (PC9AR) EGFR TKIs. DZ-SIM induced cell death by targeting mitochondrial structure and function. We concluded that DZ-SIM could be a promising novel therapy for overcoming drug resistance in patients with NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Mitocondrias/metabolismo , Humanos
9.
Cell Death Dis ; 12(1): 2, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33414463

RESUMEN

Lysine (K)-specific demethylase 6B (KDM6B), a stress-inducible H3K27me3 demethylase, plays oncogenic or antitumoral roles in malignant tumors depending on the type of tumor cell. However, how this histone modifier affects the progression of prostate cancer (PCa) is still unknown. Here we analyzed sequenced gene expression data and tissue microarray to explore the expression features and prognostic value of KDM6B in PCa. Further, we performed in vitro cell biological experiments and in vivo nude mouse models to reveal the biological function, upstream and downstream regulation mechanism of KDM6B. In addition, we investigated the effects of a KDM6B inhibitor, GSK-J4, on PCa cells. We showed that KDM6B overexpression was observed in PCa, and elevated KDM6B expression was associated with high Gleason Score, low serum prostate-specific antigen level and shorted recurrence-free survival. Moreover, KDM6B prompted proliferation, migration, invasion and cell cycle progression and suppressed apoptosis in PCa cells. GSK-J4 administration could significantly suppress the biological function of KDM6B in PCa cells. KDM6B is involved in the development of castration-resistant prostate cancer (CRPC), and combination of MDV3100 plus GSK-J4 is effective for CRPC and MDV3100-resistant CRPC. Mechanism exploration revealed that androgen receptor can decrease the transcription of KDM6B and that KDM6B demethylates H3K27me3 at the cyclin D1 promoter and cooperates with smad2/3 to prompt the expression of cyclin D1. In conclusion, our study demonstrates that KDM6B is an androgen receptor regulated gene and plays oncogenic roles by promoting cyclin D1 transcription in PCa and GSK-J4 has the potential to be a promising agent for the treatment of PCa.


Asunto(s)
Ciclina D1/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/fisiología , Ciclina D1/genética , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Masculino , Ratones , Ratones Desnudos , Células PC-3 , Regiones Promotoras Genéticas , Neoplasias de la Próstata/genética , Transducción de Señal , Análisis de Matrices Tisulares , Transfección
10.
Nanotheranostics ; 5(1): 57-72, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391975

RESUMEN

Successful visualization of prostate cancer (PCa) tumor margins during surgery remains a major challenge. The visualization of these tumors during surgery via near infrared fluorescence (NIRF) imaging would greatly enhance surgical resection, minimizing tumor recurrence and improving outcome. Furthermore, chemotherapy is typically administered to patients after surgery to treat any missed tumor tissue around the surgical area, minimizing metastasis and increasing patient survival. For these reasons, a theranostics fluorescent nanoparticle could be developed to assist in the visualization of PCa tumor margins, while also delivering chemotherapeutic drug after surgery. Methods: Ferumoxytol (FMX) conjugated to the fluorescent dye and PCa targeting agent, heptamethine carbocyanine (HMC), yielded the HMC-FMX nanoprobe that was tested in vitro with various PCa cell lines and in vivo with both subcutaneous and orthotopic PCa mouse models. Visualization of these tumors via NIRF imaging after administration of HMC-FMX was performed. In addition, delivery of chemotherapeutic drug and their effect on tumor growth was also assessed. Results: HMC-FMX internalized into PCa cells, labeling these cells and PCa tumors in mice with near infrared fluorescence, facilitating tumor margin visualization. HMC-FMX was also able to deliver drugs to these tumors, reducing cell migration and slowing down tumor growth. Conclusion: HMC-FMX specifically targeted PCa tumors in mice allowing for the visualization of tumor margins by NIRF imaging. Furthermore, delivery of anticancer drugs by HMC-FMX effectively reduced prostate tumor growth and reduced cell migration in vitro. Thus, HMC-FMX can potentially translate into the clinic as a nanotheranostics agent for the intraoperative visualization of PCa tumor margins, and post-operative treatment of tumors with HMC-FMX loaded with anticancer drugs.


Asunto(s)
Nanopartículas , Neoplasias de la Próstata/patología , Humanos , Cuidados Intraoperatorios , Masculino , Neoplasias de la Próstata/cirugía
11.
Clin Genitourin Cancer ; 18(6): 425-428, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32631766

RESUMEN

The addition of docetaxel and abiraterone to androgen deprivation therapy (ADT) heralded a new era in the first-line treatment of metastatic castration-sensitive prostate cancer (mCSPC). Following the success of these combination regimens, 3 new trials presented data on using enzalutamide or apalutamide in men with mCSPC, which showed similar success. These seminal trials collectively established the addition of docetaxel, enzalutamide, apalutamide, or abiraterone to ADT as standards in the upfront treatment of mCSPC. Notably, a subset of patients in these more recent trials were treated with a combination of docetaxel, ADT, and androgen receptor signaling inhibitors or maintenance androgen receptor signaling inhibitors after docetaxel and ADT that provided an initial glimpse into the efficacy of these triplet or maintenance strategies. We discuss the implications of these recent findings and place them in context of the current mCSPC treatment landscape.


Asunto(s)
Andrógenos , Neoplasias de la Próstata , Antagonistas de Andrógenos/uso terapéutico , Castración , Docetaxel/uso terapéutico , Humanos , Masculino , Receptores Androgénicos , Resultado del Tratamiento
12.
ACS Nano ; 14(7): 8392-8408, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32551496

RESUMEN

Despite significant efforts to improve glioblastoma multiforme (GBM) treatment, GBM remains one of the most lethal cancers. Effective GBM treatments require sensitive intraoperative tumor visualization and effective postoperative chemotherapeutic delivery. Unfortunately, the diffusive and infiltrating nature of GBM limits the detection of GBM tumors, and current intraoperative visualization methods limit complete tumor resection. In addition, although chemotherapy is often used to eliminate any cancerous tissue remaining after surgery, most chemotherapeutic drugs do not effectively cross the brain-blood barrier (BBB) or enter GBM tumors. As a result, GBM has limited treatment options with high recurrence rates, and methods that improve its complete visualization during surgery and treatment are needed. Herein, we report a fluorescent nanoparticle platform for the near-infrared fluorescence (NIRF)-based tumor boundary visualization and image-guided drug delivery into GBM tumors. Our nanoplatform is based on ferumoxytol (FMX), an FDA-approved magnetic resonance imaging-sensitive superparamagnetic iron oxide nanoparticle, which is conjugated with hepthamethine cyanine (HMC), a NIRF ligand that specifically targets the organic anion transporter polypeptides that are overexpressed in GBM. We have shown that HMC-FMX nanoparticles cross the BBB and selectively accumulate in the tumor using orthotopic GBM mouse models, enabling NIRF-based visualization of infiltrating tumor tissue. In addition, HMC-FMX can encapsulate chemotherapeutic drugs, such as paclitaxel or cisplatin, and deliver these agents into GBM tumors, reducing tumor size and increasing survival. Taken together, these observations indicate that HMC-FMX is a promising nanoprobe for GBM surgical visualization and drug delivery.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Animales , Barrera Hematoencefálica , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/cirugía , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Glioblastoma/cirugía , Ratones , Paclitaxel/uso terapéutico
13.
Sci Rep ; 10(1): 1216, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31988304

RESUMEN

Advanced and therapy-resistant prostate tumors often display neural or neuroendocrine behavior. We assessed the consequences of prostate cancer cell interaction with neural cells, which are rich in the human prostate and resident of the prostate tumor. In 3-dimensional co-culture with neurospheres, red fluorescent human LNCaP cells formed agglomerates on the neurosphere surface. Upon induced neural differentiation, some red fluorescent cells showed morphology of fully differentiated neural cells, indicating fusion between the cancer and neural stem cells. These fusion hybrids survived for extended times in a quiescent state. A few eventually restarted cell division and propagated to form derivative hybrid progenies. Clones of the hybrid progenies were highly heterogeneous; most had lost prostatic and epithelial markers while some had acquired neural marker expression. These results indicate that cancer cells can fuse with bystander neural cells in the tumor microenvironment; and cancer cell fusion is a direct route to tumor cell heterogeneity.


Asunto(s)
Células-Madre Neurales/metabolismo , Células Neuroendocrinas/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Fusión Celular/métodos , Línea Celular Tumoral , Proliferación Celular/fisiología , Técnicas de Cocultivo/métodos , Humanos , Masculino , Células-Madre Neurales/fisiología , Sistemas Neurosecretores/citología , Próstata/citología , Neoplasias de la Próstata/inmunología , Ratas , Células del Estroma/citología , Microambiente Tumoral/fisiología
14.
Mol Cancer Ther ; 19(1): 101-111, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31530650

RESUMEN

Metastatic castration-resistant prostate cancer (CRPC) is currently incurable. Cancer growth and progression is intimately affected by its interaction with host microenvironment. Cotargeting of the stroma and prostate cancer is therefore an emerging therapeutic strategy for metastatic CRPC. Cancer-induced osteoclastogenesis is known to contribute to CRPC bone metastasis. This study is to extend pharmacologic value of our synthesized LCC03, a derivative of 5-(2',4'-difluorophenyl)-salicylanilide that has previously testified for its osteoclastogenesis activity, by exploring its additional cytotoxic properties and underlying mechanism in CRPC cells. LCC03 was chemically synthesized and examined for cell growth inhibition in a serial of CRPC cell lines. We demonstrated that LCC03 dose-dependently suppressed proliferation and retarded cell-cycle progression in CRPC cells. The classical autophagy features, including autophagosome formation and LC3-II conversion, were dramatically shown in LCC03-treated CRPC cells, and it was associated with the suppressed AKT/mTOR signaling pathways, a major negative regulator of autophagy. Moreover, an expanded morphology of the endoplasmic reticulum (ER), increased expression of the ER stress markers GRP78 and PERK, and eIF2α phosphorylation were observed. Blockage of autophagy and PERK pathways using small molecule inhibitors or shRNA knockdown reversed LCC03-induced autophagy and cell death, thus indicating that the PERK-eIF2α pathway contributed to the LCC03-induced autophagy. Furthermore, treatment of tumor-bearing mice with intraperitoneal administered LCC03 suppressed the growth of CRPC xenografts in mouse bone without systemic toxicity. The dual action of 5-(2',4'-difluorophenyl)-salicylanilide on targeting both the osteoclasts and the tumor cells strongly indicates that LCC03 is a promising anticancer candidate for preventing and treating metastatic CRPC.


Asunto(s)
Autofagia/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Salicilanilidas/uso terapéutico , Animales , Chaperón BiP del Retículo Endoplásmico , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias de la Próstata Resistentes a la Castración/patología , Salicilanilidas/farmacología , Transducción de Señal
15.
Prostate ; 80(3): 274-283, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31846114

RESUMEN

PURPOSE: We previously determined that cancer-stromal interaction was a direct route to tumor cell heterogeneity progression, since cancer-stromal cell fusion in coculture resulted in the creation of heterogeneous clones of fusion hybrid progeny. In this report, we modified the cancer-stromal coculture system to establish optimal experimental conditions for investigating cell fusion machinery and the mechanism of heterogeneity progression. EXPERIMENTAL DESIGN: Red fluorescence protein-tagged LNCaP cells were cocultured with green fluorescence protein-labeled prostate stromal cells for cancer-stromal cell fusion, which was tracked as dual fluorescent cells by fluorescence microscopy. RESULTS: We identified the most efficient strategy to isolate clones of fusion hybrid progenies. From the coculture, mixed cells including fusion hybrids were subjected to low-density replating for colony formation by fusion hybrid progeny. These colonies could propagate into derivative cell populations. Compared to the parental LNCaP cells, clones of the fusion hybrid progeny displayed divergent behaviors and exhibited permanent genomic hybridization. CONCLUSIONS: Cancer-stromal cell fusion leads to cancer cell heterogeneity. The cancer-stromal coculture system characterized in this study can be used as a model for molecular characterization of cancer cell fusion as the mechanism behind the progression of heterogeneity observed in clinical prostate cancers.


Asunto(s)
Proteínas Fluorescentes Verdes/análisis , Proteínas Luminiscentes/análisis , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Células del Estroma/metabolismo , Células del Estroma/patología , Comunicación Celular/fisiología , Fusión Celular , Línea Celular Tumoral , Técnicas de Cocultivo , Técnica del Anticuerpo Fluorescente/métodos , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Microscopía Fluorescente/métodos , Transporte de Proteínas , Proteína Fluorescente Roja
17.
Theranostics ; 9(10): 2812-2826, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244925

RESUMEN

Rationale: Our objective was to develop a circulating tumor cell (CTC)-RNA assay for characterizing clinically relevant RNA signatures for the assessment of androgen receptor signaling inhibitor (ARSI) sensitivity in metastatic castration-resistant prostate cancer (mCRPC) patients. Methods: We developed the NanoVelcro CTC-RNA assay by combining the Thermoresponsive (TR)-NanoVelcro CTC purification system with the NanoString nCounter platform for cellular purification and RNA analysis. Based on the well-validated, tissue-based Prostate Cancer Classification System (PCS), we focus on the most aggressive and ARSI-resistant PCS subtype, i.e., PCS1, for CTC analysis. We applied a rigorous bioinformatic process to develop the CTC-PCS1 panel that consists of prostate cancer (PCa) CTC-specific RNA signature with minimal expression in background white blood cells (WBCs). We validated the NanoVelcro CTC-RNA assay and the CTC-PCS1 panel with well-characterized PCa cell lines to demonstrate the sensitivity and dynamic range of the assay, as well as the specificity of the PCS1 Z score (the likelihood estimate of the PCS1 subtype) for identifying PCS1 subtype and ARSI resistance. We then selected 31 blood samples from 23 PCa patients receiving ARSIs to test in our assay. The PCS1 Z scores of each sample were computed and compared with ARSI treatment sensitivity. Results: The validation studies using PCa cell line samples showed that the NanoVelcro CTC-RNA assay can detect the RNA transcripts in the CTC-PCS1 panel with high sensitivity and linearity in the dynamic range of 5-100 cells. We also showed that the genes in CTC-PCS1 panel are highly expressed in PCa cell lines and lowly expressed in background WBCs. Using the artificial CTC samples simulating the blood sample conditions, we further demonstrated that the CTC-PCS1 panel is highly specific in identifying PCS1-like samples, and the high PCS1 Z score is associated with ARSI resistance samples. In patient bloods, ARSI-resistant samples (ARSI-R, n=14) had significantly higher PCS1 Z scores as compared with ARSI-sensitive samples (ARSI-S, n=17) (Rank-sum test, P=0.003). In the analysis of 8 patients who were initially sensitive to ARSI (ARSI-S) and later developed resistance (ARSI-R), we found that the PCS1 Z score increased from the time of ARSI-S to the time of ARSI-R (Pairwise T-test, P=0.016). Conclusions: Using our new methodology, we developed a first-in-class CTC-RNA assay and demonstrated the feasibility of transforming clinically-relevant tissue-based RNA profiling such as PCS into CTC tests. This approach allows for detecting RNA expression relevant to clinical drug resistance in a non-invasive fashion, which can facilitate patient-specific treatment selection and early detection of drug resistance, a goal in precision oncology.


Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Antineoplásicos/farmacología , Células Neoplásicas Circulantes/efectos de los fármacos , Neoplasias de la Próstata Resistentes a la Castración/patología , ARN/análisis , Transducción de Señal/efectos de los fármacos , Transcriptoma , Biología Computacional , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Masculino , ARN/genética
18.
Int J Cancer ; 145(8): 2249-2259, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31020641

RESUMEN

Though human prostate cancer (PCa) heterogeneity can best be studied using multiple cell types isolated from clinical specimens, the difficulty of establishing cell lines from clinical tumors has hampered this approach. In this proof-of-concept study, we established a human PCa cell line from a prostatectomy surgical specimen without the need for retroviral transduction. In a previous report, we characterized the stromal cells derived from PCa specimens. Here, we characterized the epithelial cells isolated from the same tumors. Compared to the ease of establishing prostate stromal cell lines, prostatic epithelial cell lines are challenging. From three matched pairs of normal and tumor tissues, we established one new PCa cell line, HPE-15. We confirmed the origin of HPE-15 cells by short tandem repeat microsatellite polymorphism analysis. HPE-15 cells are androgen-insensitive and express marginal androgen receptor, prostate-specific antigen and prostate-specific membrane antigen proteins. HPE-15 expresses luminal epithelial markers of E-cadherin and cytokeratin 18, basal cell markers of cytokeratin 5 and p63 and neuroendocrine marker of chromogranin A. Interestingly, HPE-15 Cells exhibited no tumorigenicity in different strains of immune-deficient mice but can become tumorigenic through interaction with aggressive cancer cell types. HPE-15 cells can thus serve as an experimental model for the study of PCa progression, metastasis and tumor cell dormancy.


Asunto(s)
Células Epiteliales/citología , Mesodermo/citología , Próstata/citología , Neoplasias de la Próstata/patología , Células del Estroma/citología , Animales , Carcinogénesis , Comunicación Celular , Línea Celular , Línea Celular Transformada , Línea Celular Tumoral , Células Epiteliales/metabolismo , Humanos , Calicreínas/metabolismo , Masculino , Mesodermo/metabolismo , Ratones , Próstata/metabolismo , Antígeno Prostático Específico/metabolismo , Prostatectomía , Neoplasias de la Próstata/metabolismo , Células del Estroma/metabolismo , Trasplante Heterólogo , Células Tumorales Cultivadas
19.
Cancer ; 125(13): 2222-2232, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30840322

RESUMEN

BACKGROUND: Burkitt lymphoma is a fast-growing mature B cell malignancy, whose genetic hallmark is translocation and activation of the c-myc gene. Prompt multiagent immunochemotherapy regimens can have favorable outcomes, but prognosis is poor in refractory or relapsed disease. We previously identified a novel family of near-infrared heptamethine carbocyanine fluorescent dyes (HMCD or DZ) with tumor-homing properties via organic anion-transporting peptides. These membrane carriers have uptake in tumor cells but not normal cells in cell culture, mouse and dog tumor models, patient-derived xenografts, and perfused kidney cancers in human patients. METHODS: Here we report the cytotoxic effects of a synthesized conjugate of DZ with cisplatin (CIS) on B cell lymphoma CA46, Daudi, Namalwa, Raji, and Ramos cell lines in cell culture and in xenograft tumor formation. Impaired mitochondrial membrane permeability was examined as the mechanism of DZ-CIS-induced lymphoma cell death. RESULTS: The new conjugate, DZ-CIS, is cytotoxic against Burkitt lymphoma cell lines and tumor models. DZ-CIS retains tumor-homing properties to mitochondrial and lysosomal compartments, does not accumulate in normal cells and tissues, and has no nephrotoxicity in mice. DZ-CIS accumulated in Burkitt lymphoma cells and tumors induces apoptosis and retards tumor cell growth in culture and xenograft tumor growth in mice. CONCLUSION: DZ-CIS downregulated c-myc and overcame CIS resistance in myc-driven TP53-mutated aggressive B cell Burkitt lymphoma. We propose that DZ-CIS could be used to treat relapsed/refractory aggressive Burkitt lymphomas.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Linfoma de Burkitt/tratamiento farmacológico , Carbocianinas/química , Cisplatino/química , Animales , Apoptosis , Proliferación Celular , Composición de Medicamentos , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Asian J Urol ; 6(1): 65-81, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30775250

RESUMEN

This article describes cell signaling network of metastatic prostate cancer (PCa) to bone and visceral organs in the context of tumor microenvironment and for the development of novel therapeutics. The article focuses on our recent progress in the understanding of: 1) The plasticity and dynamics of tumor-stroma interaction; 2) The significance of epigenetic reprogramming in conferring cancer growth, invasion and metastasis; 3) New insights on altered junctional communication affecting PCa bone and brain metastases; 4) Novel strategies to overcome therapeutic resistance to hormonal antagonists and chemotherapy; 5) Genetic-based therapy to co-target tumor and bone stroma; 6) PCa-bone-immune cell interaction and TBX2-WNTprotein signaling in bone metastasis; 7) The roles of monoamine oxidase and reactive oxygen species in PCa growth and bone metastasis; and 8) Characterization of imprinting cluster of microRNA, in tumor-stroma interaction. This article provides new approaches and insights of PCa metastases with emphasis on basic science and potential for clinical translation. This article referenced the details of the various approaches and discoveries described herein in peer-reviewed publications. We dedicate this article in our fond memory of Dr. Donald S. Coffey who taught us the spirit of sharing and the importance of focusing basic science discoveries toward translational medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...