Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 10537-10550, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39435043

RESUMEN

Background: Phototherapy based on photocatalytic semiconductor nanomaterials has received considerable attention for the cancer treatment. Nonetheless, intense efficacy for in vivo treatment is restricted by inadequate photocatalytic activity and visible light response. Methods: In this study, we designed a photocatalytic heterostructure using graphitic carbon nitride (g-C3N4) and tin disulfide (SnS2) to synthesize g-C3N4/SnS2 heterostructure through hydrothermal process. Furthermore, Au nanoparticles were decorated in situ deposition on the surface of the g-C3N4/SnS2 heterostructure to form g-C3N4/SnS2@Au nanoparticles. Results: The g-C3N4/SnS2@Au nanoparticles generated intense reactive oxygen species radicals under near-infrared (NIR) laser irradiation through photodynamic therapy (PDT) pathways (Type-I and Type-II). These nanoparticles exhibited enhanced photothermal therapy (PTT) efficacy with high photothermal conversion efficiency (41%) when subjected to 808 nm laser light, owing to the presence of Au nanoparticles. The in vitro studies have indicated that these nanoparticles can induce human liver carcinoma cancer cell (HepG2) apoptosis (approximately 80% cell death) through the synergistic therapeutic effects of PDT and PTT. The in vivo results demonstrated that these nanoparticles exhibited enhanced efficient antitumor effects based on the combined effects of PDT and PTT. Conclusion: The g-C3N4/SnS2@Au nanoparticles possessed enhanced photothermal properties and PDT effect, good biocompatibility and intense antitumor efficacy. Therefore, these nanoparticles could be considered promising candidates through synergistic PDT/PTT effects upon irradiation with NIR laser for cancer treatment.


Asunto(s)
Oro , Grafito , Rayos Infrarrojos , Nanopartículas del Metal , Fotoquimioterapia , Terapia Fototérmica , Oro/química , Humanos , Fotoquimioterapia/métodos , Terapia Fototérmica/métodos , Animales , Nanopartículas del Metal/química , Células Hep G2 , Ratones , Grafito/química , Compuestos de Nitrógeno/química , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Neoplasias Hepáticas/terapia , Ratones Endogámicos BALB C , Sulfuros/química , Sulfuros/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Ratones Desnudos
2.
Artículo en Inglés | MEDLINE | ID: mdl-39418655

RESUMEN

A combination of therapeutic modalities in a single nanostructure is crucial for a successful cancer treatment. Synergistic photothermal therapy (PTT) can enhance the effects of chemodynamic therapy (CDT) and chemotherapy, which could intensify the therapeutic efficacy to induce cancer cell apoptosis. In this study, Fe and Mn on a zeolitic imidazolate framework (ZIF-8) (Fe/Mn-ZIF-8; FMZ) were synthesized through ion deposition. Furthermore, bismuth sulfide nanorods (Bi2S3 NRs; BS NRs) were synthesized via a hydrothermal process and coated onto FMZ to generate the core-shell structure of the Bi2S3@FMZ nanoparticles (B@FMZ). Next, methotrexate (MTX) was loaded effectively onto the porous surface of ZIF-8 to form the B@FMZ/MTX nanoparticles. The Fenton-like reaction catalyzes Fe2+/Mn2+ ions by decomposing H2O2 in the tumor microenvironment, resulting in the formation of toxic hydroxyl radicals (·OH), which promotes the CDT effect of killing cancer cells. Furthermore, under 808 nm laser irradiation, these B@FMZ nanoparticles showed a strong PTT effect, owing to the presence of intense BS NRs as a photothermal agent. The B@FMZ nanoparticles exhibited a prominent drug release efficiency of 87.25% at pH 5.5 under near-infrared laser irradiation due to the PTT effect can promote the drug delivery performance. The B@FMZ nanoparticles were subjected to dual-modal imaging, guided magnetic resonance imaging, and X-ray computed tomography imaging. Both in vitro and in vivo results suggested that the B@FMZ/MTX nanoparticles exhibited enhanced antitumor effects through the combined therapeutic effects of PTT, CDT, and chemotherapy. Therefore, these nanoparticles exhibit good biocompatibility and are promising candidates for cancer treatment.

3.
J Colloid Interface Sci ; 679(Pt B): 691-702, 2024 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-39476623

RESUMEN

Sodium-ion battery (SIB) with abundant resources has been intensively developed as the efficient energy storage device. Tin disulfide (SnS2) is one of the attractive anode materials due to its high capacity and two-dimensional structure. Nevertheless, volume expansion and low conductivity result in the poor rate performance and stability. In this study, three strategies are applied to design efficient SnS2-based anode materials for the SIB. Two precursor solvents of deionized water (DIW) and ethanol and one structure-directing agent of cetyltrimethylammonium bromide (CTAB) are incorporated to synthesize SnS2. The commercial UlrapheneTM is further mixed with SnS2 to design composites (U/s-SnS2) with different ratios. The optimal SnS2 and U/s-SnS2 anodes respectively show the specific capacities of 187.7 and 326.3 mAh/g at 1.6 A/g. After 100 cycles, the U/s-SnS2 anode still attains specific capacities of 308.7 and 438.9 mAh/g at 1.0 and 0.1 A/g corresponding to capacity retentions of 74.5% and 80.1%, respectively. The excellent rate performance and cycling stability of the U/s-SnS2 anode are attributed to the smaller charge-transfer resistance and the larger Na+ diffusion coefficient. This work successfully brings a blueprint for adopting several useful strategies to improve the electrochemical performance of SnS2. The effects for all parameters are also carefully explained.

4.
Talanta ; 282: 127008, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39406096

RESUMEN

Listeria monocytogenes is a gram-positive bacterium that causes listeriosis in humans. This contaminates the ready-to-eat food products and compromises their safety. Thus, detecting its presence in food samples with high sensitivity and reliability is necessary. Herein, we propose a label-free electrochemical immunosensor based on a mussel-inspired polydopamine-modified zinc molybdate/MXene (PDA@ZnMoO4/MXene) composite for effective and rapid detection of L. monocytogenes in food products. Spectrophotometry approaches were employed to examine the resulting composites. Voltammetry and impedimetry techniques were used to confirm the step-by-step assembly of the immunosensor and its sensitive detection of L. monocytogenes in various food products, such as milk and smoked seafood. The results demonstrated the practicality of the constructed immunosensor, with an appreciable linearity of 10-107 CFU/ml and a reasonably low detection limit (LOD, 12 CFU/ml). Moreover, the immunosensor exhibited excellent selectivity for microbial cocktails and acceptable repeatability, reproducibility, and storage stability. Thus, we believe that the proposed sensitive, reliable, and label-free immunosensor based on the PDA surface modification technique for detecting L. monocytogenes can be extended to monitor various food-borne pathogens to ensure food safety.

5.
Chemosphere ; 365: 143336, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39277039

RESUMEN

Photoelectrochemical (PEC) detection technology is key for fighting pollution, leveraging the photoelectric conversion of the photoelectrode material. A specialized photoelectrode was developed to detect Hg2+ ions with exceptional sensitivity, utilizing an anodic PEC sensor composed of Er3NbO7/P@g-C3N4/SnS2 ternary nanocomposite. Rare earth metal niobates (RENs) were chosen due to their underexplored potential, whose performance was enhanced through bandgap engineering and surface modification, facilitated by P@g-C3N4 as an immobilization matrix and SnS2, belonging to the I-IV semiconductors category fostering hybrid heterojunction formation for boasting optical properties and suitable redox potentials. Introducing Hg2+ into the system, a specific amalgamation reaction occurs between reduced Hg and Sn. This reaction obstructs electron transfer to the FTO electrode surface, leading to the recombination of charges. The proposed PEC sensor exhibited remarkable analytical performance for Hg2+ detection, high sensitivity, a detection limit of 0.019 pM, excellent selectivity, and a detectable concentration range of 0.002-0.15 nM. Additionally, it demonstrated good recovery and low relative standard deviation when analyzing Hg2+ in water samples, highlighting the potential application of the heterostructure in detecting heavy metal ions via PEC technology.


Asunto(s)
Técnicas Electroquímicas , Mercurio , Nanocompuestos , Sulfuros , Compuestos de Estaño , Contaminantes Químicos del Agua , Mercurio/análisis , Nanocompuestos/química , Contaminantes Químicos del Agua/análisis , Técnicas Electroquímicas/métodos , Compuestos de Estaño/química , Sulfuros/química , Luz , Electrodos , Límite de Detección , Niobio/química , Procesos Fotoquímicos , Monitoreo del Ambiente/métodos , Grafito/química , Compuestos de Nitrógeno/química , Nitrilos
6.
Environ Pollut ; 361: 124892, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39241949

RESUMEN

Lead ions (Pb2+) are heavy metal environmental pollutants that can significantly impact biological health. In this study, the synthesis of a ternary nanocomposite, ErVO4/P@g-C3N4/SnS2, was achieved using a combination of hydrothermal synthesis and mechanical grinding. The as-fabricated photoelectrochemical (PEC) sensor was found to be an ideal substrate for Pb2+ detection with high sensitivity and reliability. The ErVO4/P@g-C3N4/SnS2/FTO was selected as the substrate because of its remarkable and reliable photocurrent response. The Pb2+ sensor exhibited a low detection limit of 0.1 pM and a broad linear range of 0.002-0.2 nM. Moreover, the sensor exhibited outstanding stability, selectivity, and reproducibility. In real-time applications, it exhibited stable recovery and a low relative standard deviation, ensuring reliable and accurate measurements. The as-prepared PEC sensor was highly stable for the detection of Pb2+ in different water samples. This promising characteristic highlights its significant potential for use in the detection of environmental pollutants.


Asunto(s)
Técnicas Electroquímicas , Plomo , Nanocompuestos , Contaminantes Químicos del Agua , Plomo/análisis , Contaminantes Químicos del Agua/análisis , Nanocompuestos/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Luz , Sulfuros/química , Límite de Detección , Compuestos de Vanadio/química , Procesos Fotoquímicos , Compuestos de Estaño
7.
ACS Appl Mater Interfaces ; 16(37): 49249-49261, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39235429

RESUMEN

Bismuth vanadate (BVO) having suitable band edges is one of the effective photocatalysts for water oxidation, which is the rate-determining step in the water splitting process. Incorporating cocatalysts can reduce activation energy, create hole sinks, and improve photocatalytic ability of BVO. In this work, the visible light active nickel tellurium oxide (NTO) is used as the cocatalyst on the BVO photoanode to improve photocatalytic properties. Different NTO amounts are deposited on the BVO to balance optical and electrical contributions. Higher visible light absorbance and effective charge cascades are developed in the NTO and BVO composite (NTO/BVO). The highest photocurrent density of 6.05 mA/cm2 at 1.23 V versus reversible hydrogen electrode (VRHE) and the largest applied bias photon-to-current efficiency (ABPE) of 2.13% are achieved for NTO/BVO, while BVO shows a photocurrent density of 4.19 mA/cm2 at 1.23 VRHE and ABPE of 1.54%. Excellent long-term stability under light illumination is obtained for NTO/BVO with photocurrent retention of 91.31% after 10,000 s. The photoelectrochemical catalytic mechanism of NTO/BVO is also proposed based on measured band structures and possible interactions between NTO and BVO. This work has depicted a novel cocatalytic BVO system with a new photocharging material and successfully achieves high photocurrent densities for catalyzing water oxidation.

8.
JMIR Public Health Surveill ; 10: e59449, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235279

RESUMEN

Background: Young children are susceptible to enterovirus (EV) infections, which cause significant morbidity in this age group. Objective: This study investigated the characteristics of virus strains and the epidemiology of EVs circulating among young children in Taiwan from 2011 to 2020. Methods: Children diagnosed with EV infections from 2011 to 2020 were identified from the routine national health insurance data monitoring disease system, real-time outbreak and disease surveillance system, national laboratory surveillance system, and Statistics of Communicable Diseases and Surveillance Report, a data set (secondary data) of the Taiwan Centers for Disease and Control. Four primary outcomes were identified: epidemic features, characteristics of sporadic and cluster cases of EV infections, and main cluster institutions. Results: From 2011 to 2020, between 10 and 7600 person-times visited the hospitals for EV infections on an outpatient basis daily. Based on 2011 to 2020 emergency department EV infection surveillance data, the permillage of EV visits throughout the year ranged from 0.07‰ and 25.45‰. After typing by immunofluorescence assays, the dominant type was coxsackie A virus (CVA; 8844/12,829, 68.9%), with most constituting types CVA10 (n=2972), CVA2 (n=1404), CVA6 (n=1308), CVA4 (n=1243), CVA16 (n=875), and CVA5 (n=680); coxsackie B virus CVB (n=819); echovirus (n=508); EV-A71 (n=1694); and EV-D68 (n=10). There were statistically significant differences (P<.001) in case numbers of EV infections among EV strains from 2011 to 2020. Cases in 2012 had 15.088 times the odds of being EV-A71, cases in 2014 had 2.103 times the odds of being CVA, cases in 2015 had 1.569 times the odds of being echovirus, and cases in 2018 had 2.274 times the odds of being CVB as cases in other years. From 2011 to 2020, in an epidemic analysis of EV clusters, 57 EV clusters were reported. Clusters that tested positive included 53 (53/57, 93%) CVA cases (the major causes were CVA6, n=32, and CVA10, n=8). Populous institutions had the highest proportion (7 of 10) of EV clusters. Conclusions: This study is the first report of sporadic and cluster cases of EV infections from surveillance data (Taiwan Centers for Disease and Control, 2011-2020). This information will be useful for policy makers and clinical experts to direct prevention and control activities to EV infections that cause the most severe illness and greatest burden to the Taiwanese.


Asunto(s)
Infecciones por Enterovirus , Humanos , Taiwán/epidemiología , Infecciones por Enterovirus/epidemiología , Preescolar , Lactante , Masculino , Estudios Retrospectivos , Femenino , Niño , Recién Nacido , Enterovirus/aislamiento & purificación , Enterovirus/clasificación , Brotes de Enfermedades
9.
Chemosphere ; 364: 143188, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39187027

RESUMEN

Water contamination is a serious environmental issue posing a significant global challenge. Roxarsone (ROX), a widely used anticoccidial drug is excreted in urine and feces, potentially disrupting natural habitats. Therefore, rapid and cost-effective ROX detection is essential. In this study, we developed a 2D sheet structure of zinc molybdate decorated on MXene (ZnMoO4/MXene) for detecting ROX using electrochemical methods. The materials were characterized using appropriate spectrophotometric and voltammetric techniques. The ZnMoO4/MXene hybrid exhibited excellent electrocatalytic performance due to its rapid electron transfer rate and higher electrical conductivity. The ZnMoO4/MXene-modified GCE (ZnMoO4/MXene/GCE) showed a broad linear range with high sensitivity (10.413 µA µÐœ-1 cm-2) and appreciable limit of detection (LOD) as low as 0.0081 µM. It also demonstrated significant anti-interference capabilities, excellent storage stability, and remarkable reproducibility. Furthermore, the feasibility of utilizing ZnMoO4/MXene/GCE for monitoring ROX in water samples was confirmed, achieving satisfactory recoveries.


Asunto(s)
Técnicas Electroquímicas , Molibdeno , Roxarsona , Contaminantes Químicos del Agua , Zinc , Molibdeno/química , Contaminantes Químicos del Agua/análisis , Técnicas Electroquímicas/métodos , Roxarsona/química , Roxarsona/análisis , Roxarsona/orina , Zinc/análisis , Zinc/química , Límite de Detección , Reproducibilidad de los Resultados , Arsénico/análisis , Arsénico/orina , Monitoreo del Ambiente/métodos
10.
J Colloid Interface Sci ; 675: 792-805, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39002230

RESUMEN

Sodium-ion battery (SIB) is one of potential alternatives to lithium-ion battery, because of abundant resources and lower price of sodium. High electrical conductivity and long-term durability of MXene are advantageous as the anode material of SIB, but low energy density restricts applications. Tin phosphide possesses high theoretical capacity, low redox potential, and large energy density, but volume expansion reduces its cycling stability. In this study, tin phosphide particles are in-situ encapsulated into MXene conductive networks (SnxPy/MXene) by hydrothermal and phosphorization processes as novel anode materials of SIB. MXene amounts and hydrothermal durations are investigated to evenly distribute SnxPy in MXene. After 100 cycles, SnxPy/MXene reaches high specific capacities of 438.8 and 314.1 mAh/g at 0.2 and 1.0 A/g, respectively. The capacity retentions of 6.0% and 73.6% at 0.2 A/g are respectively obtained by SnxPy and SnxPy/MXene. The better specific capacity and cycling stability of SnxPy/MXene are attributed to less volume expansion of SnxPy during charge/discharge processes and relieved self-stacking of MXene by encapsulating SnxPy particles between MXene layers. Electrochemical impedance spectroscopy and Galvanostatic intermittent titration technique are also applied to analyze the charge storage mechanism in SIB. Higher sodium ion diffusion coefficient and smaller charge-transfer resistance are obtained by SnxPy/MXene.

11.
Adv Sci (Weinh) ; 11(34): e2404019, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981048

RESUMEN

Triboelectric nanogenerators (TENGs) have become reliable green energy harvesters by converting biomechanical motions into electricity. However, the inevitable charge leakage and poor electric field (EF) of conventional TENG result in inferior tribo-charge density on the active layer. In this paper, TiO2-MXene incorporated polystyrene (PS) nanofiber membrane (PTMx NFM) charge trapping interlayer is introduced into single electrode mode TENG (S-TENG) to prevent electron loss at the electrode interface. Surprisingly, this charge-trapping mechanism augments the surface charge density and electric output performance of TENGs. Polyvinylidene difluoride (PVDF) mixed polyurethane (PU) NFM is used as tribo-active layer, which improves the crystallinity and mechanical property of PVDF to prevent delamination during long cycle tests. Herein, the effect of this double-layer capacitive model is explained experimentally and theoretically. With optimization of the PTMx interlayer thickness, S-TENG exhibits a maximum open-circuit voltage of (280 V), short-circuit current of (20 µA) transfer charge of (120 nC), and power density of (25.2 µW cm-2). Then, this energy is utilized to charge electrical appliances. In addition, the influence of AC/DC EF simulation in wound healing management (vitro L929 cell migration, vivo tissue regeneration) is also investigated by changing the polarity of trans-epithelial potential (TEP) distribution in the wounded area.

12.
Food Chem ; 455: 139920, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850994

RESUMEN

This work presents a hydrothermal method followed by a sonochemical treatment for synthesizing tantalum decorated on iron selenide (Ta/FeSe2) integrated with nitrogen-doped graphene (NGR) as a susceptible electrode material for detecting trolox (TRX) in berries samples. The surface morphology, structural characterizations, and electrochemical performances of the synthesized Ta/FeSe2/NGR composite were analyzed via spectrophotometric and voltammetry techniques. The GCE modified with Ta/FeSe2/NGR demonstrated an impressive linear range of 0.1 to 580.3 µM for TRX detection. Additionally, it achieved a remarkable limit of detection (LOD) of 0.059 µM, and it shows a high sensitivity of 2.266 µA µÐœ-1 cm-2. Here, we used density functional theory (DFT) to investigate the structures of TRX and TRX quinone and the locations of energy levels and electron transfer sites. The developed sensor exhibits significant selectivity, satisfactory cyclic and storage stability, and notable reproducibility. Moreover, the practicality of TRX was assessed in different types of berries, yielding satisfactory recoveries.


Asunto(s)
Cromanos , Frutas , Grafito , Nitrógeno , Tantalio , Grafito/química , Frutas/química , Nitrógeno/química , Tantalio/química , Cromanos/química , Cromanos/análisis , Teoría Funcional de la Densidad , Técnicas Electroquímicas , Límite de Detección , Electrodos , Hierro/química , Hierro/análisis
13.
J Mater Chem B ; 12(32): 7814-7825, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38895823

RESUMEN

In recent decades, orthopedic implants have been widely used as materials to replace human bone tissue functions. Among these, metal implants play a crucial role. Metals with better chemical stability, such as stainless steel, titanium alloys, and cobalt-chromium-molybdenum (CoCrMo) alloy, are commonly used for long-term applications. However, good chemical stability can result in poor tissue integration between the tissue and the implant, leading to potential inflammation risks. This study creates hydrogenated CoCrMo (H-CoCrMo) surfaces, which have shown promise as anti-inflammatory orthopedic implants. Using the electrochemical cathodic hydrogen-charging method, the surface of the CoCrMo alloy was hydrogenated, resulting in improved biocompatibility, reduced free radicals, and an anti-inflammatory response. Hydrogen diffusion to a depth of approximately 106 ± 27 nm on the surface facilitated these effects. This hydrogen-rich surface demonstrated a reduction of 85.2% in free radicals, enhanced hydrophilicity as evidenced by a decrease in a contact angle from 83.5 ± 1.9° to 52.4 ± 2.2°, and an increase of 11.4% in hydroxyapatite deposition surface coverage. The cell study results revealed a suppression of osteosarcoma cell activity to 50.8 ± 2.9%. Finally, the in vivo test suggested the promotion of new bone formation and a reduced inflammatory response. These findings suggest that electrochemical hydrogen charging can effectively modify CoCrMo surfaces, offering a potential solution for improving orthopedic implant outcomes through anti-inflammatory mechanisms.


Asunto(s)
Materiales Biocompatibles , Hidrógeno , Inflamación , Vitalio , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Humanos , Hidrógeno/química , Vitalio/química , Vitalio/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Propiedades de Superficie , Prótesis e Implantes , Animales , Aleaciones/química , Aleaciones/farmacología , Cobalto/química , Ensayo de Materiales , Ratones , Tamaño de la Partícula
14.
ACS Appl Mater Interfaces ; 16(20): 25622-25636, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739745

RESUMEN

Breast cancer is a malignant tumor with a high mortality rate among women. Therefore, it is necessary to develop novel therapies to effectively treat this disease. In this study, iron selenide nanorods (FeSe2 NRs) were designed for use in magnetic hyperthermic, photothermal, and chemodynamic therapy (MHT/PTT/CDT) for breast cancer. To illustrate their efficacy, FeSe2 NRs were modified with the chemotherapeutic agent methotrexate (MTX). MTX-modified FeSe2 (FeSe2-MTX) exhibited excellent controlled drug release properties. Fe2+ released from FeSe2 NRs induced the release of •OH from H2O2 via a Fenton/Fenton-like reaction, enhancing the efficacy of CDT. Under alternating magnetic field (AMF) stimulation and 808 nm laser irradiation, FeSe2-MTX exerted potent hyperthermic and photothermal effects by suppressing tumor growth in a breast cancer nude mouse model. In addition, FeSe2 NRs can be used for magnetic resonance imaging in vivo by incorporating their superparamagnetic characteristics into a single nanomaterial. Overall, we presented a novel technique for the precise delivery of functional nanosystems to tumors that can enhance the efficacy of breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Hipertermia Inducida , Metotrexato , Ratones Desnudos , Nanotubos , Metotrexato/química , Metotrexato/farmacología , Animales , Nanotubos/química , Ratones , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Ratones Endogámicos BALB C , Terapia Fototérmica , Hierro/química , Compuestos de Selenio/química , Compuestos de Selenio/farmacología , Compuestos de Selenio/efectos de la radiación , Línea Celular Tumoral , Rayos Infrarrojos
15.
Chemosphere ; 358: 142237, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705406

RESUMEN

In this study, a novel Ce2MgMoO6/CNFs (cerium magnesium molybdite double perovskite decorated on carbon nanofibers) nanocomposite was developed for selective and ultra-sensitive detection of ciprofloxacin (CFX). Physical characterization and analytical techniques were used to explore the morphology, structure, and electrocatalytic characteristics of the Ce2MgMoO6/CNFs nanocomposite. The sensor has a wide linear range (0.005-7.71 µM and 9.75-77.71 µM), a low limit of detection (0.012 µM), high sensitivity (0.807 µA µM-1 cm-2 nM), remarkable repeatability, and an appreciable storage stability. Here, we used density functional theory to investigate CFX and oxidized CFX as well as the locations of the energy levels and electron transfer sites. Furthermore, the Ce2MgMoO6/CNFs-modified electrode was successfully tested in food samples (milk and honey), indicating an acceptable response with a recovery percentage and relative standard deviation of less than 4%, which is comparable to that of GC-MS. Finally, the developed sensor exhibited high selectivity and stability for CFX detection.


Asunto(s)
Carbono , Ciprofloxacina , Miel , Leche , Nanocompuestos , Nanofibras , Óxidos , Nanocompuestos/química , Ciprofloxacina/análisis , Ciprofloxacina/química , Óxidos/química , Leche/química , Nanofibras/química , Animales , Miel/análisis , Carbono/química , Molibdeno/química , Límite de Detección , Compuestos de Calcio/química , Titanio/química , Teoría Funcional de la Densidad , Técnicas Electroquímicas/métodos , Cerio/química , Contaminación de Alimentos/análisis , Electrodos , Magnesio/química , Magnesio/análisis
16.
Environ Pollut ; 356: 124196, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38788992

RESUMEN

This study involved the synthesis of a Ce2Sn2O7/Ag3PO4/V@g-C3N4 composite through hydrothermal methods, followed by mechanical grinding. The resulting heterojunction exhibited improved catalytic activity under visible light by effectively separating electrons and holes (e-/h+). The degradation of Tartrazine (TTZ) reached 93.20% within 50 min by employing a ternary composite at a concentration of 10 mg L-1, along with 6 mg L-1 of PS. The highest pseudo-first-order kinetic constant (0.1273 min-1 and R2 = 0.951) was observed in this system. The dual Z-scheme heterojunction is developed by Ce2Sn2O7, Ag3PO4, and V@g-C3N4, and it may increase the visible light absorption range while also accelerating charge carrier transfer and separation between catalysts. The analysis of the vulnerability positions and degradation pathways of TTZ involved the utilization of density functional theory (DFT) and gas chromatography-mass spectrometry (GC-MS) to examine the intermediate products. Therefore, Ce2Sn2O7/Ag3PO4/V@g-C3N4 is an excellent ternary nanocomposite for the remediation of pollutants.


Asunto(s)
Compuestos de Plata , Tartrazina , Cinética , Catálisis , Compuestos de Plata/química , Tartrazina/química , Sulfatos/química , Aditivos Alimentarios/química , Teoría Funcional de la Densidad , Cerio/química , Compuestos de Nitrógeno/química , Grafito , Fosfatos
17.
J Mater Chem B ; 12(16): 3881-3907, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38572601

RESUMEN

Water splitting is promising, especially for energy and environmental applications; however, there are limited studies on the link between water splitting and cancer treatment. Upconversion nanoparticles (UCNPs) can be used to convert near-infrared (NIR) light to ultraviolet (UV) or visible (Vis) light and have great potential for biomedical applications because of their profound penetration ability, theranostic approaches, low self-fluorescence background, reduced damage to biological tissue, and low toxicity. UCNPs with photocatalytic materials can enhance the photocatalytic activities that generate a shorter wavelength to increase the tissue penetration depth in the biological microenvironment under NIR light irradiation. Moreover, UCNPs with a photosensitizer can absorb NIR light and convert it into UV/vis light and emit upconverted photons, which excite the photoinitiator to create H2, O2, and/or OH˙ via water splitting processes when exposed to NIR irradiation. Therefore, combining UCNPs with intensified photocatalytic and photoinitiator materials may be a promising therapeutic approach for cancer treatment. This review provides a novel strategy for explaining the principles and mechanisms of UCNPs and NIR-driven UCNPs with photocatalytic materials through water splitting to achieve therapeutic outcomes for clinical applications. Moreover, the challenges and future perspectives of UCNP-based photocatalytic materials for water splitting for cancer treatment are discussed in this review.


Asunto(s)
Rayos Infrarrojos , Nanopartículas , Neoplasias , Agua , Humanos , Nanopartículas/química , Catálisis , Agua/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Animales , Procesos Fotoquímicos
18.
J Mater Chem B ; 12(15): 3569-3593, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494982

RESUMEN

In recent years, inorganic nanoparticles (NPs) have attracted increasing attention as potential theranostic agents in the field of oncology. Photothermal therapy (PTT) is a minimally invasive technique that uses nanoparticles to produce heat from light to kill cancer cells. PTT requires two essential elements: a photothermal agent (PTA) and near-infrared (NIR) radiation. The role of PTAs is to absorb NIR, which subsequently triggers hyperthermia within cancer cells. By raising the temperature in the tumor microenvironment (TME), PTT causes damage to the cancer cells. Nanoparticles (NPs) are instrumental in PTT given that they facilitate the passive and active targeting of the PTA to the TME, making them crucial for the effectiveness of the treatment. In addition, specific targeting can be achieved through their enhanced permeation and retention effect. Thus, owing to their significant advantages, such as altering the morphology and surface characteristics of nanocarriers comprised of PTA, NPs have been exploited to facilitate tumor regression significantly. This review highlights the properties of PTAs, the mechanism of PTT, and the results obtained from the improved curative efficacy of PTT by utilizing NPs platforms.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Hipertermia Inducida/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
19.
Chemosphere ; 355: 141744, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522669

RESUMEN

Pesticides pollute natural water reservoirs through persistent accumulation. Therefore, their toxicity and degradability are serious issues. Carbendazim (CBZ) is a pesticide used against fungal infections in agricultural crops, and its overexploitation detrimentally affects aquatic ecosystems and organisms. It is necessary to design a logical, efficient, and field-deployable method for monitoring the amount of CBZ in environmental samples. Herein, a nano-engineered bismuth selenide (Bi2Se3)/functionalized carbon nanofiber (f-CNF) nanocomposite was utilized as an electrocatalyst to fabricate an electrochemical sensing platform for CBZ. Bi2Se3/f-CNF exhibited a substantial electroactive surface area, high electrocatalytic activity, and high conductivity owing to the synergistic interaction of Bi2Se3 with f-CNF. The structural chemical compositions and morphology of the Bi2Se3/f-CNF nanocomposite were confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Electrochemical analysis was carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The voltammetry and impedance experiments exposed that the Bi2Se3/f-CNF-modified GCE has attained adequate electrocatalytic function with amended features of electron transportation (Rct = 35.93 Ω) and improved reaction sites (0.082 cm2) accessible by CBZ moiety along with exemplary electrochemical stability (98.92%). The Bi2Se3/f-CNF nanocomposite exhibited higher sensitivity of 0.2974 µA µM-1cm-2 and a remarkably low limit of detection (LOD) of 1.04 nM at a broad linera range 0.001-100 µM. The practicability of the nanocomposite was tested in environmental (tap and pond water) samples, which supports excellent signal amplification with satisfactory recoveries. Hence, the Bi2Se3/f-CNF nanocomposite is a promising electrode modifier for detecting CBZ.


Asunto(s)
Bencimidazoles , Bismuto , Carbamatos , Carbono , Nanofibras , Compuestos de Selenio , Carbono/química , Nanofibras/química , Ecosistema , Agua , Técnicas Electroquímicas/métodos , Electrodos
20.
Biomater Adv ; 158: 213778, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325029

RESUMEN

Combining chemodynamic therapy (CDT) with photothermal therapy (PTT) has developed as a promising approach for cancer treatment, as it enhances therapeutic efficiency through redox reactions and external laser induction. In this study, we designed metal organic framework (MOF) -derived Cu5Zn8/HPCNC through a carbonization process and decorated them with gold nanoparticles (Au@Cu5Zn8/HPCNC). The resulting nanoparticles were employed as a photothermal agent and Fenton catalyst. The Fenton reaction facilitated the conversation of Cu2+ to Cu+ through reaction with local H2O2, generating reactive hydroxyl radicals (·OH) with potent cytotoxic effects. To enhance the Fenton-like reaction and achieve combined therapy, laser irradiation of the Au@Cu5Zn8/HPCNC induced efficient photothermal therapy by generating localized heat. With a significantly increased absorption of Au@Cu5Zn8/HPCNC at 808 nm, the photothermal efficiency was determined to be 57.45 %. Additionally, Au@Cu5Zn8/HPCNC demonstrated potential as a contrast agent for magnetic resonance imaging (MRI) of cancers. Furthermore, the synergistic combination of PTT and CDT significantly inhibited tumor growth. This integrated approach of PTT and CDT holds great promise for cancer therapy, offering enhanced CDT and modulation of the tumor microenvironment (TME), and opening new avenues in the fight against cancer.


Asunto(s)
Nanopartículas del Metal , Estructuras Metalorgánicas , Oro , Nanopartículas del Metal/uso terapéutico , Terapia Fototérmica , Porosidad , Microambiente Tumoral , Carbono , Imagen por Resonancia Magnética , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...