Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Front Neurol ; 14: 1271640, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920833

RESUMEN

Background: Betahistine was registered in Europe in the 1970s and approved in more than 80 countries as a first-line treatment for Menière's disease. It has been administered to more than 150 million patients. However, according to a Cochrane systematic review of betahistine and recent meta-analyses, there is insufficient evidence to say whether betahistine has any effect in the currently approved dosages of up to 48 mg/d. A combination with the monoamine oxidase B (MAO-B) inhibitor, selegiline, may increase the bioavailability of betahistine to levels similar to the well-established combination of L-DOPA with carbidopa or benserazide in the treatment of Parkinson's disease. We investigated the effect of selegiline on betahistine pharmacokinetics and the safety of the combination in humans. Methods: In an investigator-initiated prospective, non-randomized, single-sequence, two-period titration, open label single-center phase 1 study, 15 healthy volunteers received three single oral dosages of betahistine (24, 48, and 96 mg in this sequence with at least 2 days' washout period) without and with selegiline (5 mg/d with a loading period of 7 days). Betahistine serum concentrations were measured over a period of 240 min at eight time points (area under the curve, AUC0-240 min). This trial is registered with EudraCT (2019-002610-39) and ClinicalTrials.gov. Findings: In all three single betahistine dosages, selegiline increased the betahistine bioavailability about 80- to 100-fold. For instance, the mean (±SD) of the area under curve for betahistine 48 mg alone was 0.64 (+/-0.47) h*ng/mL and for betahistine plus selegiline 53.28 (+/-37.49) h*ng/mL. The half-life time of around 30 min was largely unaffected, except for the 24 mg betahistine dosage. In total, 14 mild adverse events were documented. Interpretation: This phase 1 trial shows that the MAO-B inhibitor selegiline increases betahistine bioavailability by a factor of about 80 to 100. No safety concerns were detected. Whether the increased bioavailability has an impact on the preventive treatment of Menière's disease, acute vestibular syndrome, or post-BPPV residual dizziness has to be evaluated in placebo-controlled trials. Clinical trial registration: https://clinicaltrials.gov/study/NCT05938517?intr=betahistine%20and%20selegiline&rank=1, identifier: NCT05938517.

2.
J Biomol Struct Dyn ; 41(23): 14036-14048, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36762717

RESUMEN

Bipolar disorder is a major psychiatric disorder associated with cognitive impairment and a high suicide rate. Frontline therapy for this condition includes lithium (Li+)-containing treatments that can exert severe side effects. One target of Li+ is inositol monophosphatase-1 (IMPase1); inhibition of IMPase1 through small-molecule compounds may provide an alternative treatment for bipolar disorder. One such compound is the anti-inflammatory drug ebselen, which is well tolerated and safe; however, ebselen's exact mechanism of action in IMPase1 inhibition is not fully understood, preventing rational design of IMPase1 inhibitors. To fill this gap, we performed crystallographic and biochemical studies to investigate how ebselen inhibits IMPase1. We obtained a structure of IMPase1 in space group P21 after treatment with ebselen that revealed three key active-site loops (residues 33-44, 70-79, and 161-165) that are either disordered or in multiple conformations, supporting a hypothesis whereby dynamic conformational changes may be important for catalysis and ebselen inhibition. Using the thermal shift assay, we confirmed that ebselen significantly destabilizes the enzyme. Molecular docking suggests that ebselen could bind in the vicinity of His217. Investigation of the role of IMPase1 residues His217 and Cys218 suggests that inhibition of IMPase1 by ebselen may not be mediated via covalent modification of the active-site cysteine (Cys218) and is not affected by the covalent modification of other cysteine residues in the structure. Our results suggest that effects previously ascribed to ebselen-dependent inhibition likely result from disruption of essential active-site architecture, preventing activation of the IMPase1-Mg2+ complex.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Cisteína , Compuestos de Organoselenio , Humanos , Simulación del Acoplamiento Molecular , Monoéster Fosfórico Hidrolasas/química , Litio/farmacología , Litio/uso terapéutico , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/química
3.
Cell Death Dis ; 13(12): 1047, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36522443

RESUMEN

Increased brain iron content has been consistently reported in sporadic Parkinson's disease (PD) patients, and an increase in cytosolic free iron is known to cause oxidative stress and cell death. However, whether iron also accumulates in susceptible brain areas in humans or in mouse models of familial PD remains unknown. In addition, whilst the lysosome functions as a critical intracellular iron storage organelle, little is known about the mechanisms underlying lysosomal iron release and how this process is influenced by lysosome biogenesis and/or lysosomal exocytosis. Here, we report an increase in brain iron content also in PD patients due to the common G2019S-LRRK2 mutation as compared to healthy age-matched controls, whilst differences in iron content are not observed in G2019S-LRRK2 knockin as compared to control mice. Chemically triggering iron overload in cultured cells causes cytotoxicity via the endolysosomal release of iron which is mediated by TRPML1. TFEB expression reverts the iron overload-associated cytotoxicity by causing lysosomal exocytosis, which is dependent on a TRPML1-mediated increase in cytosolic calcium levels. Therefore, approaches aimed at increasing TFEB levels, or pharmacological TRPML1 activation in conjunction with iron chelation may prove beneficial against cell death associated with iron overload conditions such as those associated with PD.


Asunto(s)
Sobrecarga de Hierro , Canales de Potencial de Receptor Transitorio , Humanos , Ratones , Animales , Hierro/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Calcio/metabolismo , Lisosomas/metabolismo , Sobrecarga de Hierro/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
4.
EBioMedicine ; 76: 103856, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35152152

RESUMEN

BACKGROUND: Many repurposed drugs have progressed rapidly to Phase 2 and 3 trials in COVID19 without characterisation of Pharmacokinetics /Pharmacodynamics including safety data. One such drug is nafamostat mesylate. METHODS: We present the findings of a phase Ib/IIa open label, platform randomised controlled trial of intravenous nafamostat in hospitalised patients with confirmed COVID-19 pneumonitis. Patients were assigned randomly to standard of care (SoC), nafamostat or an alternative therapy. Nafamostat was administered as an intravenous infusion at a dose of 0.2 mg/kg/h for a maximum of seven days. The analysis population included those who received any dose of the trial drug and all patients randomised to SoC. The primary outcomes of our trial were the safety and tolerability of intravenous nafamostat as an add on therapy for patients hospitalised with COVID-19 pneumonitis. FINDINGS: Data is reported from 42 patients, 21 of which were randomly assigned to receive intravenous nafamostat. 86% of nafamostat-treated patients experienced at least one AE compared to 57% of the SoC group. The nafamostat group were significantly more likely to experience at least one AE (posterior mean odds ratio 5.17, 95% credible interval (CI) 1.10 - 26.05) and developed significantly higher plasma creatinine levels (posterior mean difference 10.57 micromol/L, 95% CI 2.43-18.92). An average longer hospital stay was observed in nafamostat patients, alongside a lower rate of oxygen free days (rate ratio 0.55-95% CI 0.31-0.99, respectively). There were no other statistically significant differences in endpoints between nafamostat and SoC. PK data demonstrated that intravenous nafamostat was rapidly broken down to inactive metabolites. We observed no significant anticoagulant effects in thromboelastometry. INTERPRETATION: In hospitalised patients with COVID-19, we did not observe evidence of anti-inflammatory, anticoagulant or antiviral activity with intravenous nafamostat, and there were additional adverse events. FUNDING: DEFINE was funded by LifeArc (an independent medical research charity) under the STOPCOVID award to the University of Edinburgh. We also thank the Oxford University COVID-19 Research Response Fund (BRD00230).


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Benzamidinas/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Guanidinas/uso terapéutico , Administración Intravenosa , Adulto , Anciano , Anciano de 80 o más Años , Antiinflamatorios no Esteroideos/farmacocinética , Benzamidinas/efectos adversos , Benzamidinas/farmacocinética , Biomarcadores/sangre , Biomarcadores/metabolismo , COVID-19/mortalidad , COVID-19/virología , Esquema de Medicación , Femenino , Guanidinas/efectos adversos , Guanidinas/farmacocinética , Semivida , Humanos , Inmunofenotipificación , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Resultado del Tratamiento , Carga Viral
5.
Sci Rep ; 11(1): 15812, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349180

RESUMEN

Small changes to molecules can have profound effects on their pharmacological activity as exemplified by the addition of the two-carbon acetyl group to make drugs more effective by enhancing their pharmacokinetic or pharmacodynamic properties. N-acetyl-D,L-leucine is approved in France for vertigo and its L-enantiomer is being developed as a drug for rare and common neurological disorders. However, the precise mechanistic details of how acetylation converts leucine into a drug are unknown. Here we show that acetylation of leucine switches its uptake into cells from the L-type amino acid transporter (LAT1) used by leucine to organic anion transporters (OAT1 and OAT3) and the monocarboxylate transporter type 1 (MCT1). Both the kinetics of MCT1 (lower affinity compared to LAT1) and the ubiquitous tissue expression of MCT1 make it well suited for uptake and distribution of N-acetyl-L-leucine. MCT1-mediated uptake of a N-acetyl-L-leucine as a prodrug of leucine bypasses LAT1, the rate-limiting step in activation of leucine-mediated signalling and metabolic process inside cells such as mTOR. Converting an amino acid into an anion through acetylation reveals a way for the rational design of drugs to target anion transporters.


Asunto(s)
Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Leucina/análogos & derivados , Leucina/química , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Profármacos/metabolismo , Simportadores/metabolismo , Acetilación , Transporte Biológico , Células HEK293 , Humanos , Cinética , Leucina/metabolismo , Profármacos/química , Transducción de Señal
6.
Nat Commun ; 12(1): 2113, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837202

RESUMEN

The accumulation of adenosine is strongly correlated with the need for sleep and the detection of sleep pressure is antagonised by caffeine. Caffeine also affects the circadian timing system directly and independently of sleep physiology, but how caffeine mediates these effects upon the circadian clock is unclear. Here we identify an adenosine-based regulatory mechanism that allows sleep and circadian processes to interact for the optimisation of sleep/wake timing in mice. Adenosine encodes sleep history and this signal modulates circadian entrainment by light. Pharmacological and genetic approaches demonstrate that adenosine acts upon the circadian clockwork via adenosine A1/A2A receptor signalling through the activation of the Ca2+ -ERK-AP-1 and CREB/CRTC1-CRE pathways to regulate the clock genes Per1 and Per2. We show that these signalling pathways converge upon and inhibit the same pathways activated by light. Thus, circadian entrainment by light is systematically modulated on a daily basis by sleep history. These findings contribute to our understanding of how adenosine integrates signalling from both light and sleep to regulate circadian timing in mice.


Asunto(s)
Adenosina/metabolismo , Trastornos Cronobiológicos/fisiopatología , Relojes Circadianos/efectos de los fármacos , Sueño/fisiología , Animales , Encéfalo/patología , Cafeína/farmacología , Línea Celular Tumoral , Trastornos Cronobiológicos/tratamiento farmacológico , Trastornos Cronobiológicos/etiología , Trastornos Cronobiológicos/patología , Relojes Circadianos/fisiología , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Modelos Animales de Enfermedad , Humanos , Luz , Masculino , Ratones , Ratones Transgénicos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fotoperiodo , Quinazolinas/administración & dosificación , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Transducción de Señal/efectos de la radiación , Sueño/efectos de los fármacos , Privación de Sueño/complicaciones , Triazoles/administración & dosificación
7.
Mol Psychiatry ; 26(9): 5252-5265, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32404948

RESUMEN

Bipolar disorder is a chronic neuropsychiatric condition associated with mood instability, where patients present significant sleep and circadian rhythm abnormalities. Currently, the pathophysiology of bipolar disorder remains elusive, but treatment with lithium continues as the benchmark pharmacotherapy, functioning as a potent mood stabilizer in most, but not all patients. Lithium is well documented to induce period lengthening and amplitude enhancement of the circadian clock. Based on this, we sought to investigate whether lithium differentially impacts circadian rhythms in bipolar patient cell lines and crucially if lithium's effect on the clock is fundamental to its mood-stabilizing effects. We analyzed the circadian rhythms of bipolar patient-derived fibroblasts (n = 39) and their responses to lithium and three further chronomodulators. Here we show, relative to controls (n = 23), patients exhibited a wider distribution of circadian period (p < 0.05), and that patients with longer periods were medicated with a wider range of drugs, suggesting lower effectiveness of lithium. In agreement, patient fibroblasts with longer periods displayed muted circadian responses to lithium as well as to other chronomodulators that phenocopy lithium. These results show that lithium differentially impacts the circadian system in a patient-specific manner and its effect is dependent on the patient's circadian phenotype. We also found that lithium-induced behavioral changes in mice were phenocopied by modulation of the circadian system with drugs that target the clock, and that a dysfunctional clock ablates this response. Thus, chronomodulatory compounds offer a promising route to a novel treatment paradigm. These findings, upon larger-scale validation, could facilitate the implementation of a personalized approach for mood stabilization.


Asunto(s)
Trastorno Bipolar , Litio , Animales , Trastorno Bipolar/tratamiento farmacológico , Ritmo Circadiano , Fibroblastos , Humanos , Compuestos de Litio/farmacología , Ratones
8.
JIMD Rep ; 56(1): 46-57, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33204596

RESUMEN

Niemann-Pick disease type C (NPC) is a neurodegenerative lysosomal storage disorder caused by mutations in either NPC1 (95% of cases) or NPC2. Reduced late endosome/lysosome calcium (Ca2+) levels and the accumulation of unesterified cholesterol and sphingolipids within the late endocytic system characterize this disease. We previously reported impaired lysosome-related organelle (LRO) function in Npc1 -/- Natural Killer cells; however, the potential contribution of impaired acid compartment Ca2+ flux and LRO function in other cell types has not been determined. Here, we investigated LRO function in NPC1 disease platelets. We found elevated numbers of circulating platelets, impaired platelet aggregation and prolonged bleeding times in a murine model of NPC1 disease. Electron microscopy revealed abnormal ultrastructure in murine platelets, consistent with that seen in a U18666A (pharmacological inhibitor of NPC1) treated megakaryocyte cell line (MEG-01) exhibiting lipid storage and acidic compartment Ca2+ flux defects. Furthermore, platelets from NPC1 patients across different ages were found to cluster at the lower end of the normal range when platelet numbers were measured and had platelet volumes that were clustered at the top of the normal range. Taken together, these findings highlight the role of acid compartment Ca2+ flux in the function of platelet LROs.

9.
Eur J Pharmacol ; 883: 173377, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32687920

RESUMEN

Lithium, commonly used to treat bipolar disorder, potentiates the ability of the muscarinic agonist pilocarpine to induce seizures in rodents. As this potentiation by lithium is reversed by the administration of myo-inositol, the potentiation may be mediated by inhibition of inositol monophosphatase (IMPase), a known target of lithium. Recently, we demonstrated that ebselen is a 'lithium mimetic' in regard to behaviours in both mice and man. Ebselen inhibits IMPase in vitro and lowers myo-inositol in vivo in the brains of mice and men, making ebselen the only known inhibitor of IMPase, other than lithium, that penetrates the blood-brain barrier. Our objective was to determine the effects of ebselen on sensitization to pilocarpine-induced seizures and neural activity. We administered ebselen at different doses and time intervals to mice, followed by injection of a sub-seizure dose of pilocarpine. We assessed seizure and neural activity by a subjective seizure rating scale, by monitoring tremors, and by induction of the immediate early gene c-fos. In contrast to lithium, ebselen did not potentiate the ability of pilocarpine to induce seizures. Unexpectedly, ebselen inhibited pilocarpine-induced tremor as well as pilocarpine-induced increases in c-fos mRNA levels. Both lithium and ebselen inhibit a common target, IMPase, but only lithium potentiates pilocarpine-induced seizures, consistent with their polypharmacology at diverse molecular targets. We conclude that ebselen does not potentiate pilocarpine-induced seizures and instead, reduces pilocarpine-mediated neural activation. This lack of potentiation of muscarinic sensitization may be one reason for the lack of side-effects observed with ebselen treatment clinically.


Asunto(s)
Anticonvulsivantes/farmacología , Azoles/farmacología , Encéfalo/efectos de los fármacos , Cloruro de Litio/toxicidad , Neuronas/efectos de los fármacos , Compuestos de Organoselenio/farmacología , Pilocarpina , Convulsiones/prevención & control , Animales , Anticonvulsivantes/toxicidad , Azoles/toxicidad , Encéfalo/metabolismo , Encéfalo/fisiopatología , Células CHO , Señalización del Calcio/efectos de los fármacos , Cricetulus , Modelos Animales de Enfermedad , Fosfatos de Inositol/metabolismo , Isoindoles , Masculino , Ratones , Neuronas/metabolismo , Compuestos de Organoselenio/toxicidad , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores Muscarínicos/efectos de los fármacos , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/fisiopatología
10.
PLoS One ; 15(2): e0229585, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32108176

RESUMEN

The enantiomers of many chiral drugs not only exhibit different pharmacological effects in regard to targets that dictate therapeutic and toxic effects, but are also handled differently in the body due to pharmacokinetic effects. We investigated the pharmacokinetics of the enantiomers of N-acetyl-leucine after administration of the racemate (N-acetyl-DL-leucine) or purified, pharmacologically active L-enantiomer (N-acetyl-L-leucine). The results suggest that during chronic administration of the racemate, the D-enantiomer would accumulate, which could have negative effects. Compounds were administered orally to mice. Plasma and tissue samples were collected at predetermined time points (0.25 to 8 h), quantified with liquid chromatography/mass spectrometry, and pharmacokinetic constants were calculated using a noncompartmental model. When administered as the racemate, both the maximum plasma concentration (Cmax) and the area under the plasma drug concentration over time curve (AUC) were much greater for the D-enantiomer relative to the L-enantiomer. When administered as the L-enantiomer, the dose proportionality was greater than unity compared to the racemate, suggesting saturable processes affecting uptake and/or metabolism. Elimination (ke and T1/2) was similar for both enantiomers. These results are most readily explained by inhibition of uptake at an intestinal carrier of the L-enantiomer by the D-enantiomer, and by first-pass metabolism of the L-, but not D-enantiomer, likely by deacetylation. In brain and muscle, N-acetyl-L-leucine levels were lower than N-acetyl-D-leucine, consistent with rapid conversion into L-leucine and utilization by normal leucine metabolism. In summary, the enantiomers of N-acetyl-leucine exhibit large, unexpected differences in pharmacokinetics due to both unique handling and/or inhibition of uptake and metabolism of the L-enantiomer by the D-enantiomer. Taken together, these results have clinical implications supporting the use of N-acetyl-L-leucine instead of the racemate or N-acetyl-D-leucine, and support the research and development of only N-acetyl-L-leucine.


Asunto(s)
Leucina/análogos & derivados , Administración Oral , Animales , Área Bajo la Curva , Transporte Biológico Activo , Cromatografía Líquida de Alta Presión , Humanos , Leucina/administración & dosificación , Leucina/química , Leucina/farmacocinética , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos BALB C , Modelos Biológicos , Estereoisomerismo
11.
Bipolar Disord ; 21(1): 61-67, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29600584

RESUMEN

OBJECTIVES: We previously demonstrated oxidative stress in bipolar patients and a relationship between the age of illness onset and total glutathione, a principal antioxidant. In this study, we sought to replicate these findings in a new cohort of patients. METHODS: We recruited bipolar patients from Warneford Hospital, Oxford, UK, of similar age and grouped them according to age of onset of illness. The early-onset group comprised patients with onset at <23 years, and the late group comprised patients with onset at >30 years. A third group, comprising age-matched healthy volunteers, was also included. Reduced and oxidized glutathione, cysteine, and cystine were determined in plasma, using high-performance liquid chromatography. Mitochondrial DNA copy number, measured in whole blood, was also compared between patients and healthy controls. RESULTS: Significant increases in oxidative stress were observed in the patient groups, compared with the control group; however, no differences in glutathione-related oxidative stress measures were detected between the early- and late-onset bipolar patient groups. No differences were observed in the amount of mitochondrial DNA, and there was no correlation with mood state. CONCLUSION: Using a more accurate method to quantify oxidative stress than in our previous study, we show that oxidative stress is a consistent feature of bipolar disorder. Although we did not reproduce our finding correlating age of onset of illness to oxidative stress, we have shown, once again, that oxidative stress is a consistent feature of bipolar disorder.


Asunto(s)
Trastorno Bipolar/sangre , Glutatión/sangre , Estrés Oxidativo/fisiología , Adulto , Antioxidantes/metabolismo , Trastorno Bipolar/diagnóstico , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo
12.
J Psychopharmacol ; 32(9): 1018-1026, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986609

RESUMEN

BACKGROUND: Deficits in impulse control feature in many psychiatric conditions including bipolar disorder, suicidality and addictions. Lithium lowers impulsivity in clinical populations and decreases pathological gambling in experimental medicine studies, but suffers from adverse effects, poor compliance and a low therapeutic index. AIMS: Recently we identified that the neuroprotective agent ebselen, which is reportedly safe in humans, inhibited inositol monophosphatase (IMPase), a candidate lithium mechanism. Ebselen also reduced 5-HT receptor (5-HT2A) function which predicts impulsivity lowering properties. Here we investigated the effect of ebselen in rat models of impulsive behaviour. METHODS: Ebselen was tested in two models of impulsivity with human analogues: the five-choice serial reaction time task (5-CSRTT) and rodent gambling task (rGT). The main outcome measures were premature responses (5-CSRTT and rGT) and choice behaviour (rGT), which model motor impulsivity and choice impulsivity, respectively. RESULTS: At doses that decreased 5-HT2A receptor function (DOI-induced wet dog shakes), ebselen decreased premature responding in the 5-CSRTT both in the absence and presence of cocaine. The 5-HT2A receptor antagonist MDL 100,907 also reduced premature responding in the 5-CSRTT although not in the presence of cocaine. In the rGT ebselen showed a tendency to reduce premature responding but had no effect on choice behaviour. CONCLUSIONS: These findings suggest that ebselen preferentially reduces motor impulsivity over choice impulsivity, and that inhibition of 5-HT2A receptor function is a contributing mechanism. Collectively, these data support the repurposing of ebselen as an anti-impulsive treatment and fast-tracking to clinical trials in patient groups characterised by poor impulse control.


Asunto(s)
Azoles/farmacología , Conducta Impulsiva/efectos de los fármacos , Compuestos de Organoselenio/farmacología , Animales , Conducta de Elección/efectos de los fármacos , Cocaína/farmacología , Fluorobencenos/farmacología , Isoindoles , Masculino , Modelos Animales , Fármacos Neuroprotectores/farmacología , Piperidinas/farmacología , Ratas , Tiempo de Reacción/efectos de los fármacos
13.
Autophagy ; 12(9): 1487-506, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27383256

RESUMEN

Various neurodegenerative disorders are associated with increased brain iron content. Iron is known to cause oxidative stress, which concomitantly promotes cell death. Whereas endolysosomes are known to serve as intracellular iron storage organelles, the consequences of increased iron on endolysosomal functioning, and effects on cell viability upon modulation of endolysosomal iron release remain largely unknown. Here, we show that increasing intracellular iron causes endolysosomal alterations associated with impaired autophagic clearance of intracellular protein aggregates, increased cytosolic oxidative stress and increased cell death. These effects are subject to regulation by NAADP, a potent second messenger reported to target endolysosomal TPCNs (2-pore channels). Consistent with endolysosomal iron storage, cytosolic iron levels are modulated by NAADP, and increased cytosolic iron is detected when overexpressing active, but not inactive TPCNs, indicating that these channels can modulate endolysosomal iron release. Cell death triggered by altered intralysosomal iron handling is abrogated in the presence of an NAADP antagonist or when inhibiting RAB7A activity. Taken together, our results suggest that increased endolysosomal iron causes cell death associated with increased cytosolic oxidative stress as well as autophagic impairments, and these effects are subject to modulation by endolysosomal ion channel activity in a RAB7A-dependent manner. These data highlight alternative therapeutic strategies for neurodegenerative disorders associated with increased intracellular iron load.


Asunto(s)
Endosomas/metabolismo , Sobrecarga de Hierro , Lisosomas/metabolismo , NADP/análogos & derivados , Proteínas de Unión al GTP rab/metabolismo , Animales , Apoptosis , Autofagia , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Línea Celular Tumoral , Supervivencia Celular , Citosol/metabolismo , ADN/química , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Hierro/química , NADP/química , Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo , Células PC12 , Ratas , Proteínas de Unión a GTP rab7
14.
Psychopharmacology (Berl) ; 233(14): 2655-61, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27256357

RESUMEN

RATIONALE: Lithium remains the most effective treatment for bipolar disorder and also has important effects to lower suicidal behaviour, a property that may be linked to its ability to diminish impulsive, aggressive behaviour. The antioxidant drug, ebselen, has been proposed as a possible lithium-mimetic based on its ability in animals to inhibit inositol monophosphatase (IMPase), an action which it shares with lithium. OBJECTIVES: The aim of the study was to determine whether treatment with ebselen altered emotional processing and diminished measures of risk-taking behaviour. METHODS: We studied 20 healthy participants who were tested on two occasions receiving either ebselen (3600 mg over 24 h) or identical placebo in a double-blind, randomized, cross-over design. Three hours after the final dose of ebselen/placebo, participants completed the Cambridge Gambling Task (CGT) and a task that required the detection of emotional facial expressions (facial emotion recognition task (FERT)). RESULTS: On the CGT, relative to placebo, ebselen reduced delay aversion while on the FERT, it increased the recognition of positive vs negative facial expressions. CONCLUSIONS: The study suggests that at the dosage used, ebselen can decrease impulsivity and produce a positive bias in emotional processing. These findings have implications for the possible use of ebselen in the disorders characterized by impulsive behaviour and dysphoric mood.


Asunto(s)
Azoles/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Emociones/efectos de los fármacos , Conducta Impulsiva/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Compuestos de Organoselenio/farmacología , Reconocimiento en Psicología/efectos de los fármacos , Adulto , Análisis de Varianza , Animales , Trastorno Bipolar/tratamiento farmacológico , Estudios Cruzados , Toma de Decisiones/efectos de los fármacos , Método Doble Ciego , Expresión Facial , Femenino , Humanos , Isoindoles , Masculino , Monoéster Fosfórico Hidrolasas , Recompensa , Asunción de Riesgos , Adulto Joven
15.
Trials ; 17(1): 116, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26936776

RESUMEN

BACKGROUND: Despite lithium's being the most effective drug for bipolar disorder and in clinical use for decades, we still know very little about its early effects relevant to its mode of action. METHODS/DESIGN: The Oxford Lithium Trial is a double-blind, randomised, placebo-controlled study of 6-week lithium treatment in participants with bipolar disorder and mood instability. Its aim is to identify early clinical, neurocognitive and biological effects. Participants (n = 40) will undergo an intensive battery of multi-modal investigations, including remote monitoring of mood, activity and physiology, as well as cognitive testing, fMRI and magnetoencephalography, together with biochemical and gene expression measurements to assess renal, inflammatory and circadian effects. DISCUSSION: The findings derived from this trial may be of value in predicting subsequent therapeutic response or side effects, not only relevant to the use of lithium but also providing a potential signature to help in more rapid evaluation of novel mood stabilisers. In this respect, OxLith is a step towards the development of a valid experimental medicine model for bipolar disorder. TRIAL REGISTRATION: ISRCTN91624955 . Registered on 22 January 2015.


Asunto(s)
Afecto/efectos de los fármacos , Antimaníacos/uso terapéutico , Trastorno Bipolar/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Carbonato de Litio/uso terapéutico , Adulto , Antimaníacos/efectos adversos , Biomarcadores/sangre , Trastorno Bipolar/diagnóstico , Trastorno Bipolar/fisiopatología , Trastorno Bipolar/psicología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Protocolos Clínicos , Método Doble Ciego , Inglaterra , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Carbonato de Litio/efectos adversos , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Pruebas Neuropsicológicas , Estudios Prospectivos , Escalas de Valoración Psiquiátrica , Proyectos de Investigación , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
16.
Mol Cell Biol ; 36(10): 1464-79, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26951199

RESUMEN

Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1(-) mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism.


Asunto(s)
Dictyostelium/fisiología , Inositol/metabolismo , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Autofagia , Citocinesis , Dictyostelium/enzimología , Dictyostelium/genética , Liasas Intramoleculares/química , Metabolismo , Mutación , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
17.
Psychopharmacology (Berl) ; 233(6): 1097-104, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26758281

RESUMEN

RATIONALE: Lithium is an effective treatment for bipolar disorder, but safety issues complicate its clinical use. The antioxidant drug, ebselen, may be a possible lithium-mimetic based on its ability to inhibit inositol monophosphatase (IMPase), an action which it shares with lithium. OBJECTIVES: Our primary aim was to determine whether ebselen lowered levels of inositol in the human brain. We also assessed the effect of ebselen on other brain neurometabolites, including glutathione, glutamate, glutamine, and glutamate + glutamine (Glx) METHODS: Twenty healthy volunteers were tested on two occasions receiving either ebselen (3600 mg over 24 h) or identical placebo in a double-blind, random-order, crossover design. Two hours after the final dose of ebselen/placebo, participants underwent proton magnetic resonance spectroscopy ((1)H MRS) at 7 tesla (T) with voxels placed in the anterior cingulate and occipital cortex. Neurometabolite levels were calculated using an unsuppressed water signal as a reference and corrected for individual cerebrospinal fluid content in the voxel. RESULTS: Ebselen produced no effect on neurometabolite levels in the occipital cortex. In the anterior cingulate cortex, ebselen lowered concentrations of inositol (p = 0.028, Cohen's d = 0.60) as well as those of glutathione (p = 0.033, d = 0.58), glutamine (p = 0.024, d = 0.62), glutamate (p = 0.01, d = 0.73), and Glx (p = 0.001, d = 1.0). CONCLUSIONS: The study suggests that ebselen produces a functional inhibition of IMPase in the human brain. The effect of ebselen to lower glutamate is consistent with its reported ability to inhibit the enzyme, glutaminase. Ebselen may have potential as a repurposed treatment for bipolar disorder.


Asunto(s)
Azoles/farmacología , Giro del Cíngulo/efectos de los fármacos , Inositol/metabolismo , Lóbulo Occipital/efectos de los fármacos , Compuestos de Organoselenio/farmacología , Adulto , Estudios Cruzados , Método Doble Ciego , Femenino , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Giro del Cíngulo/metabolismo , Humanos , Isoindoles , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Masculino , Lóbulo Occipital/metabolismo , Adulto Joven
18.
Neuropsychopharmacology ; 41(7): 1768-78, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26593266

RESUMEN

Lithium remains the gold standard in treating bipolar disorder but has unwanted toxicity and side effects. We previously reported that ebselen inhibits inositol monophosphatase (IMPase) and exhibits lithium-like effects in animal models through lowering of inositol. Ebselen has been tested in clinical trials for other disorders, enabling us to determine for the first time the effect of a blood-brain barrier-penetrant IMPase inhibitor on human central nervous system (CNS) function. We now report that in a double-blind, placebo-controlled trial with healthy participants, acute oral ebselen reduced brain myo-inositol in the anterior cingulate cortex, consistent with CNS target engagement. Ebselen decreased slow-wave sleep and affected emotional processing by increasing recognition of some emotions, decreasing latency time in the acoustic startle paradigm, and decreasing the reinforcement of rewarding stimuli. In summary, ebselen affects the phosphoinositide cycle and has CNS effects on surrogate markers that may be relevant to the treatment of bipolar disorder that can be tested in future clinical trials.


Asunto(s)
Antioxidantes/farmacología , Azoles/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Inositol/metabolismo , Litio/farmacología , Compuestos de Organoselenio/farmacología , Adulto , Estudios Cruzados , Método Doble Ciego , Emociones/efectos de los fármacos , Femenino , Voluntarios Sanos , Humanos , Isoindoles , Aprendizaje/efectos de los fármacos , Masculino , Refuerzo en Psicología , Sueño/efectos de los fármacos , Encuestas y Cuestionarios , Factores de Tiempo , Adulto Joven
19.
Cell Calcium ; 59(1): 12-20, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26691915

RESUMEN

Mutations in ß-glucocerebrosidase (encoded by GBA1) cause Gaucher disease (GD), a lysosomal storage disorder, and increase the risk of developing Parkinson disease (PD). The pathogenetic relationship between the two disorders is unclear. Here, we characterised Ca(2+) release in fibroblasts from type I GD and PD patients together with age-matched, asymptomatic carriers, all with the common N370S mutation in ß-glucocerebrosidase. We show that endoplasmic reticulum (ER) Ca(2+) release was potentiated in GD and PD patient fibroblasts but not in cells from asymptomatic carriers. ER Ca(2+) signalling was also potentiated in fibroblasts from aged healthy subjects relative to younger individuals but not further increased in aged PD patient cells. Chemical or molecular inhibition of ß-glucocerebrosidase in fibroblasts and a neuronal cell line did not affect ER Ca(2+) signalling suggesting defects are independent of enzymatic activity loss. Conversely, lysosomal Ca(2+) store content was reduced in PD fibroblasts and associated with age-dependent alterations in lysosomal morphology. Accelerated remodelling of Ca(2+) stores by pathogenic GBA1 mutations may therefore feature in PD.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Glucosilceramidasa/metabolismo , Lisosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Línea Celular Tumoral , Células Cultivadas , Retículo Endoplásmico/patología , Fibroblastos/patología , Humanos , Lisosomas/patología , Enfermedad de Parkinson/patología
20.
Cell Calcium ; 58(6): 617-27, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26475051

RESUMEN

Neurons possess an elaborate system of endolysosomes. Recently, endolysosomes were found to have readily releasable stores of intracellular calcium; however, relatively little is known about how such 'acidic calcium stores' affect calcium signaling in neurons. Here we demonstrated in primary cultured neurons that calcium released from acidic calcium stores triggered calcium influx across the plasma membrane, a phenomenon we have termed "acidic store-operated calcium entry (aSOCE)". aSOCE was functionally distinct from store-operated calcium release and calcium entry involving endoplasmic reticulum. aSOCE appeared to be governed by N-type calcium channels (NTCCs) because aSOCE was attenuated significantly by selectively blocking NTCCs or by siRNA knockdown of NTCCs. Furthermore, we demonstrated that NTCCs co-immunoprecipitated with the lysosome associated membrane protein 1 (LAMP1), and that aSOCE is accompanied by increased cell-surface expression levels of NTCC and LAMP1 proteins. Moreover, we demonstrated that siRNA knockdown of LAMP1 or Rab27a, both of which are key proteins involved in lysosome exocytosis, attenuated significantly aSOCE. Taken together our data suggest that aSOCE occurs in neurons, that aSOCE plays an important role in regulating the levels and actions of intraneuronal calcium, and that aSOCE is regulated at least in part by exocytotic insertion of N-type calcium channels into plasma membranes through LAMP1-dependent lysosome exocytosis.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Neuronas/metabolismo , Animales , Membrana Celular/metabolismo , Exocitosis/fisiología , Lisosomas/metabolismo , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...