Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lancet Child Adolesc Health ; 7(4): 269-279, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36803632

RESUMEN

BACKGROUND: ZF2001 is a recombinant protein subunit vaccine against SARS-CoV-2 that has been approved for use in China, Colombia, Indonesia, and Uzbekistan in adults aged 18 years or older, but not yet in children and adolescents younger than 18 years. We aimed to evaluate the safety and immunogenicity of ZF2001 in children and adolescents aged 3-17 years in China. METHODS: The randomised, double-blind, placebo-controlled, phase 1 trial and the open-label, non-randomised, non-inferiority, phase 2 trial were done at the Xiangtan Center for Disease Control and Prevention (Hunan Province, China). Healthy children and adolescents aged 3-17 years, without a history of SARS-CoV-2 vaccination, without a history of COVID-19, without COVID-19 at the time of the study, and without contact with patients with confirmed or suspected COVID-19 were included in the phase 1 and phase 2 trials. In the phase 1 trial, participants were divided into three groups according to age (3-5 years, 6-11 years, and 12-17 years). Each group was randomly assigned (4:1), using block randomisation with five blocks, each with a block size of five, to receive three 25 µg doses of the vaccine, ZF2001, or placebo intramuscularly in the arm 30 days apart. The participants and investigators were masked to treatment allocation. In the phase 2 trial, participants received three 25 µg doses of ZF2001 30 days apart and remained stratified by age group. For phase 1, the primary endpoint was safety and the secondary endpoint was immunogenicity (humoral immune response on day 30 after the third vaccine dose: geometric mean titre [GMT] of prototype SARS-CoV-2 neutralising antibodies and seroconversion rate, and geometric mean concentration [GMC] of prototype SARS-CoV-2 receptor-binding domain [RBD]-binding IgG antibodies and seroconversion rate). For phase 2, the primary endpoint was the GMT of SARS-CoV-2 neutralising antibodies with seroconversion rate on day 14 after the third vaccine dose, and the secondary endpoints included the GMT of RBD-binding antibodies and seroconversion rate on day 14 after the third vaccine dose, the GMT of neutralising antibodies against the omicron BA.2 subvariant and seroconversion rate on day 14 after the third vaccine dose, and safety. Safety was analysed in participants who received at least one dose of the vaccine or placebo. Immunogenicity was analysed in the full-analysis set (ie, participants who received at least one dose and had antibody results) by intention to treat and in the per-protocol set (ie, participants who completed the whole vaccination course and had antibody results). Non-inferiority in the phase 2 trial (neutralising antibody titre of participants from this trial aged 3-17 years vs that of participants aged 18-59 years from a separate phase 3 trial) for clinical outcome assessment was based on the geometric mean ratio (GMR) and was considered met if the lower bound of the 95% CI for the GMR was 0·67 or greater. These trials are registered with ClinicalTrials.gov, NCT04961359 (phase 1) and NCT05109598 (phase 2). FINDINGS: Between July 10 and Sept 4, 2021, 75 children and adolescents were randomly assigned to receive ZF2001 (n=60) or placebo (n=15) in the phase 1 trial and were included in safety and immunogenicity analyses. Between Nov 5, 2021, and Feb 14, 2022, 400 participants (130 aged 3-7 years, 210 aged 6-11 years, and 60 aged 12-17 years) were included in the phase 2 trial and were included in the safety analysis; six participants were excluded from the immunogenicity analyses. 25 (42%) of 60 participants in the ZF2001 group and seven (47%) of 15 participants in the placebo group in phase 1, and 179 (45%) of 400 participants in phase 2, had adverse events within 30 days after the third vaccination, without a significant difference between groups in phase 1. Most adverse events were grade 1 or 2 (73 [97%] of 75 in the phase 1 trial, and 391 [98%] of 400 in the phase 2 trial). One participant in the phase 1 trial and three in the phase 2 trial who received ZF2001 had serious adverse events. One serious adverse event (acute allergic dermatitis) in the phase 2 trial was possibly related to the vaccine. In the phase 1 trial, on day 30 after the third dose, in the ZF2001 group, seroconversion of neutralising antibodies against SARS-CoV-2 was observed in 56 (93%; 95% CI 84-98) of 60 participants, with a GMT of 176·5 (95% CI 118·6-262·8), and seroconversion of RBD-binding antibodies was observed in all 60 (100%; 95% CI 94-100) participants, with a GMC of 47·7 IU/mL (95% CI 40·1-56·6). In the phase 2 trial, on day 14 after the third dose, seroconversion of neutralising antibodies against SARS-CoV-2 was seen in 392 (99%; 95% CI 98-100) participants, with a GMT of 245·4 (95% CI 220·0-273·7), and seroconversion of RBD-binding antibodies was observed in all 394 (100%; 99-100) participants, with a GMT of 8021 (7366-8734). On day 14 after the third dose, seroconversion of neutralising antibodies against the omicron subvariant BA.2 was observed in 375 (95%; 95% CI 93-97) of 394 participants, with a GMT of 42·9 (95% CI 37·9-48·5). For the non-inferiority comparison of participants aged 3-17 years with those aged 18-59 years for SARS-CoV-2 neutralising antibodies, the adjusted GMR was 8·6 (95% CI 7·0-10·4), with the lower bound of the GMR greater than 0·67. INTERPRETATION: ZF2001 is safe, well tolerated, and immunogenic in children and adolescents aged 3-17 years. Vaccine-elicited sera can neutralise the omicron BA.2 subvariant, but with reduced activity. The results support further studies of ZF2001 in children and adolescents. FUNDING: Anhui Zhifei Longcom Biopharmaceutical and the Excellent Young Scientist Program from National Natural Science Foundation of China. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Niño , Adolescente , Vacunas contra la COVID-19/efectos adversos , Subunidades de Proteína , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales
2.
Mol Cell Biochem ; 466(1-2): 91-102, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31989367

RESUMEN

Purine signaling pathway plays an important role in inflammation and tissue damage. To investigate the role of purine signaling pathway in acute alcoholic liver injury and chronic alcoholic liver fibrosis, we replicated two animal models and two cellular models. We found that body weights, liver indexes, serum biochemical parameters, serum fibrosis indexes, and pathological and immunohistochemical results had significant changes in two treatment groups compared with two control groups. In addition, gene expressions of purine receptors, inflammatory cytokines, fibrogenic cytokines, and inflammasomes increased obviously in two animal models and two cellular models. Furthermore, purine receptor inhibitors could significantly inhibit protein expressions of purine receptors and reduce protein expressions of inflammatory cytokines, fibrogenic cytokines, and inflammasomes. Besides, P2X7R small interfering ribonucleic acid (siRNA) had the same effects. Meanwhile, we detected protein expressions of inflammatory cytokines secreted by inflammasomes, and we found that purine receptor-mediated inflammasomes activation was a key event in the process of chronic alcoholic liver fibrosis. In summary, this study shows that inhibition of purine receptors can alleviate acute alcoholic liver injury and chronic alcoholic liver fibrosis in mice. Therefore, purine receptor is a potential new target for the treatment of acute alcoholic liver injury and chronic alcoholic fibrosis.


Asunto(s)
Proliferación Celular , Citocinas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Hepatopatías Alcohólicas/metabolismo , Purinas/metabolismo , Transducción de Señal , Animales , Células Estrelladas Hepáticas/patología , Inflamación/metabolismo , Inflamación/patología , Hepatopatías Alcohólicas/patología , Ratones , Receptores Purinérgicos P2X7/metabolismo
3.
Int Immunopharmacol ; 75: 105765, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31336335

RESUMEN

Hepatic fibrosis is the most common pathological feature of most chronic liver diseases, and its continuous deterioration gradually develops into liver cirrhosis and eventually leads to liver cancer. At present, there are many kinds of drugs used to treat liver fibrosis. However, Western drugs tend to only target single genes/proteins and induce many adverse reactions. Most of the mechanisms and active ingredients of traditional Chinese medicine (TCM) are not clear, and there is a lack of unified diagnosis and treatment standards. Natural products, which are characterized by structural diversity, low toxicity, and origination from a wide range of sources, have unique advantages and great potential in anti-liver fibrosis. This article summarizes the work done over the previous decade, on the active ingredients in natural products that are reported to have anti-hepatic fibrosis effects. The effective anti-hepatic fibrosis ingredients identified can be generally divided into flavonoids, saponins, polysaccharides and alkaloids. Mechanisms of anti-liver fibrosis include inhibition of liver inflammation, anti-lipid peroxidation injury, inhibition of the activation and proliferation of hepatic stellate cells (HSCs), modulation of the synthesis and secretion of pro-fibrosis factors, and regulation of the synthesis and degradation of the extracellular matrix (ECM). This review provides suggestions for the development of anti-hepatic fibrosis drugs.


Asunto(s)
Productos Biológicos/uso terapéutico , Cirrosis Hepática/tratamiento farmacológico , Animales , Productos Biológicos/farmacología , Humanos , Cirrosis Hepática/inmunología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología
4.
Int Immunopharmacol ; 66: 52-61, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30445307

RESUMEN

The P2X7 receptor is an ATP-binding cation channel involved in a broad range of inflammatory diseases. However, little is known about the potential role of P2X7R in alcohol-induced steatohepatitis and intestinal injury. In our study, C57BL/6 mice were intraperitoneally injected with P2X7R antagonists Brilliant Blue G and A438079 from the 4th day to the 10th day during the induction of chronic plus binge alcohol feeding model. Our results showed that alcohol feeding induced significant steatohepatitis and liver injury, which were mitigated by P2X7R blockade as evidenced by decreased serum levels of ALT, AST, T-CHO and TG, reduced lipid accumulation, and less inflammation. The increased intestinal inflammatory cytokines production and the prominent intestinal barrier disruption caused by alcohol were also modulated by P2X7R antagonism. Interestingly, alcohol feeding increased the relative abundance of phylum Bacteroidetes while decreased the number of phylum Verrucomicrobia and genus Akkermansia in the cecal content, which were reversed by P2X7R antagonist. Importantly, the improvement of intestinal barrier function and the restoration of partial taxonomic alterations in the gut microbiota might contribute to protect the liver from gut microbiota dysbiosis-induced second hit. Furthermore, P2X7R blockade inhibited MEK1/2-ERK1/2 phosphorylation and egr-1 expression in both liver and intestine from alcohol-fed mice. Collectively, P2X7R blockade mitigates alcohol-induced steatohepatitis and intestinal injury by inhibiting MEK1/2-ERK1/2 signaling and egr-1 expression. These studies strongly suggest that P2X7R blockade may be a promising therapeutic approach for treating alcoholic liver disease.


Asunto(s)
Hígado Graso Alcohólico/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Intestinos/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2Y/uso terapéutico , Piridinas/uso terapéutico , Colorantes de Rosanilina/uso terapéutico , Tetrazoles/uso terapéutico , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Microbioma Gastrointestinal/fisiología , Humanos , Intestinos/patología , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...