Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828699

RESUMEN

BACKGROUND: The global prevalence of iron deficiency has posed significant public health risks. Animal-derived collagen peptides have been recognized for their potent metal ion-chelating capabilities, which can greatly enhance the bioavailability of iron. Yak skins, typically discarded during production and processing, serve as a valuable resource. Based on yak skin collagen peptide (YSP), we have developed a novel iron-chelating peptide: yak skin collagen iron-chelating peptide (YSP-Fe). RESULTS: The maximum level of iron chelation of YSP-Fe achieved was 42.72 ± 0.65 mg g-1. Structural analysis indicated that YSP-Fe was primarily formed from amino, carboxyl and carbonyl groups combined with ferrous ions. Through examination of the amino acid composition, molecular docking and peptide sequence identification, it was determined that Gly, Asp and Arg played crucial roles in the chelation of ferrous ions by YSP. Furthermore, YSP-Fe was more stable in simulated gastrointestinal digestion compared to FeSO4. CONCLUSION: YSP-Fe demonstrated dual benefits of iron supplementation and antioxidant effects. These significant findings provide a foundation for the development of novel iron supplements and the effective utilization of yak skin as a valuable resource. © 2024 Society of Chemical Industry.

2.
Int J Biol Macromol ; 260(Pt 2): 129615, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246437

RESUMEN

To preserve the viability of probiotics during digestion and storage, encapsulation techniques are necessary to withstand the challenges posed by adverse environments. A core-shell structure has been developed to provide protection for probiotics. By utilizing sodium alginate (SA) / Lycium barbarum polysaccharide (LBP) as the core material and chitosan (CS) as the shell, the probiotic load reached 9.676 log CFU/mL. This formulation not only facilitated continuous release in the gastrointestinal tract but also enhanced thermal stability and storage stability. The results obtained from Fourier transform infrared spectroscopy and thermogravimetric analysis confirmed that the addition of LBP and CS affected the microstructure of the gel by enhancing the hydrogen bond force, so as to achieve controlled release. Following the digestion of the gel within the gastrointestinal tract, the released amount was determined to be 9.657 log CFU/mL. The moisture content and storage stability tests confirmed that the encapsulated Lactiplantibacillus plantarum maintained good activity for an extended period at 4 °C, with an encapsulated count of 8.469 log CFU/mL on the 28th day. In conclusion, the newly developed core-shell gel in this study exhibits excellent probiotic protection and delivery capabilities.


Asunto(s)
Quitosano , Medicamentos Herbarios Chinos , Probióticos , Alginatos/química , Quitosano/química , Viabilidad Microbiana , Geles , Probióticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...