Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Affect Disord ; 350: 900-908, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38246279

RESUMEN

BACKGROUND: The effects of the selective serotonin reuptake inhibitors (SSRIs), the first-line antidepressant treatment, have been proposed to be affected, at least in part, by the living environment. Since the quality of the environment depends not only on its objective features, but also on the subjective experience, we hypothesized that the latter plays a key role in determining SSRI treatment outcome. METHODS: We chronically administered the SSRI fluoxetine to two groups of adult CD-1 male mice that reportedly show distinct subjective experiences of the environment measured as consistent and significantly different responses to the same emotional and social stimuli. These distinct socioemotional profiles were generated by rearing mice either in standard laboratory conditions (SN) or in a communal nest (CN) where three dams breed together their offspring, sharing caregiving behavior. RESULTS: At adulthood, CN mice displayed higher levels of agonistic and anxiety-like behaviors than SN mice, indicating that they experience the environment as more socially challenging and potentially dangerous. We then administered fluoxetine, which increased offensive and anxious response in SN, while producing opposite effects in CN mice. BDNF regulation was modified by the treatment accordingly. LIMITATIONS: Subjective experience in mice was assessed as behavioral response to the environment. CONCLUSIONS: These results show that the subjective experience of the environment determines fluoxetine outcome. In a translational perspective, our findings suggest considering not only the objective quality, but also the subjective appraisal, of the patient's living environment for developing effective personalized therapeutic approaches in psychiatry.


Asunto(s)
Antidepresivos , Fluoxetina , Adulto , Ratones , Masculino , Animales , Humanos , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Ansiedad , Resultado del Tratamiento
2.
Brain Behav Immun ; 97: 423-439, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34343616

RESUMEN

Chronic psychological stress is one of the most important triggers and environmental risk factors for neuropsychiatric disorders. Chronic stress can influence all organs via the secretion of stress hormones, including glucocorticoids by the adrenal glands, which coordinate the stress response across the body. In the brain, glucocorticoid receptors (GR) are expressed by various cell types including microglia, which are its resident immune cells regulating stress-induced inflammatory processes. To study the roles of microglial GR under normal homeostatic conditions and following chronic stress, we generated a mouse model in which the GR gene is depleted in microglia specifically at adulthood to prevent developmental confounds. We first confirmed that microglia were depleted in GR in our model in males and females among the cingulate cortex and the hippocampus, both stress-sensitive brain regions. Then, cohorts of microglial-GR depleted and wild-type (WT) adult female mice were housed for 3 weeks in a standard or stressful condition, using a chronic unpredictable mild stress (CUMS) paradigm. CUMS induced stress-related behavior in both microglial-GR depleted and WT animals as demonstrated by a decrease of both saccharine preference and progressive ratio breakpoint. Nevertheless, the hippocampal microglial and neural mechanisms underlying the adaptation to stress occurred differently between the two genotypes. Upon CUMS exposure, microglial morphology was altered in the WT controls, without any apparent effect in microglial-GR depleted mice. Furthermore, in the standard environment condition, GR depleted-microglia showed increased expression of pro-inflammatory genes, and genes involved in microglial homeostatic functions (such as Trem2, Cx3cr1 and Mertk). On the contrary, in CUMS condition, GR depleted-microglia showed reduced expression levels of pro-inflammatory genes and increased neuroprotective as well as anti-inflammatory genes compared to WT-microglia. Moreover, in microglial-GR depleted mice, but not in WT mice, CUMS led to a significant reduction of CA1 long-term potentiation and paired-pulse ratio. Lastly, differences in adult hippocampal neurogenesis were observed between the genotypes during normal homeostatic conditions, with microglial-GR deficiency increasing the formation of newborn neurons in the dentate gyrus subgranular zone independently from stress exposure. Together, these findings indicate that, although the deletion of microglial GR did not prevent the animal's ability to respond to stress, it contributed to modulating hippocampal functions in both standard and stressful conditions, notably by shaping the microglial response to chronic stress.


Asunto(s)
Microglía , Receptores de Glucocorticoides , Animales , Femenino , Hipocampo/metabolismo , Masculino , Glicoproteínas de Membrana , Ratones , Microglía/metabolismo , Neurogénesis , Neuronas/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores Inmunológicos , Estrés Psicológico
3.
Behav Brain Res ; 408: 113256, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33775780

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for major depressive disorder. It has been recently proposed that these drugs, by enhancing neural plasticity, amplify the influences of the living conditions on mood. Consequently, SSRI outcome depends on the quality of the environment, improving symptomatology mainly in individuals living in favorable conditions. In adverse conditions, drugs with a different mechanism of action might have higher efficacy. The antibiotic minocycline, with neuroprotective and anti-inflammatory properties, has been recently proposed as a novel potential antidepressant treatment. To explore the drug-by-environment interaction, we compared the effects on depressive-like behavior and neural plasticity of the SSRI fluoxetine and minocycline in enriched and stressful conditions. We first exposed C57BL/6 adult female mice to 14 days of chronic unpredictable mild stress to induce a depressive-like profile. Afterward, mice received vehicle, fluoxetine, or minocycline for 21 days, while exposed to either enriched or stressful conditions. During the first five days, fluoxetine led to an improvement in enrichment but not in stress. By contrast, minocycline led to an improvement in both conditions. After 21 days, all groups showed a significant improvement in enrichment while fluoxetine worsened the depressive like behavior in stress. The effects of the drugs on neural plasticity, measured as long-term potentiation, were also environment-dependent. Overall, we show that the environment affects fluoxetine but not minocycline outcome, indicating that the latter represents a potential alternative to SSRIs to treat depressed patients living in adverse conditions. From a translation perspective, our finding call for considering the drug-by-environment interaction to select the most effective pharmacological treatment.


Asunto(s)
Antidepresivos/farmacología , Conducta Animal , Depresión/tratamiento farmacológico , Depresión/etiología , Ambiente , Fluoxetina/farmacología , Minociclina/farmacología , Plasticidad Neuronal/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Estrés Psicológico/complicaciones , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL
4.
Brain Behav Immun ; 81: 484-494, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31279682

RESUMEN

An increasing number of studies show that both inflammation and neural plasticity act as key players in the vulnerability and recovery from psychiatric disorders and neurodegenerative diseases. However, the interplay between these two players has been limitedly explored. In fact, while a few studies reported an immune activation, others conveyed an immune suppression, associated with an impairment in neural plasticity. Therefore, we hypothesized that deviations in inflammatory levels in both directions may impair neural plasticity. We tested this hypothesis experimentally, by acute treatment of C57BL/6 adult male mice with different doses of two inflammatory modulators: lipopolysaccharide (LPS), an endotoxin, and ibuprofen (IBU), a nonselective cyclooxygenase inhibitor, which are respectively a pro- and an anti-inflammatory agent. The results showed that LPS and IBU have different effects on behavior and inflammatory response. LPS treatment induced a reduction of body temperature, a decrease of body weight and a reduced food and liquid intake. In addition, it led to increased levels of inflammatory markers expression, both in the total hippocampus and in isolated microglia cells, including Interleukin (IL)-1ß, and enhanced the concentration of prostaglandin E2 (PGE2). On the other hand, IBU increased the level of anti-inflammatory markers, decreased tryptophan 2,3-dioxygenase (TDO2), the first step in the kynurenine pathway known to be activated during inflammatory conditions, and PGE2 levels. Though LPS and IBU administration differently affected mediators related with pro- or anti-inflammatory responses, they produced overlapping effects on neural plasticity. Indeed, higher doses of both LPS and IBU induced a statistically significant decrease in the amplitude of long-term potentiation (LTP), in Brain-Derived Neurotrophic Factor (BDNF) expression levels and in the phosphorylation of the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor subunit GluR1, compared to the control group. Such effect appears to be dose-dependent since only the higher, but not the lower, dose of both compounds led to a plasticity impairment. Overall, the present findings indicate that acute treatment with pro- and anti-inflammatory agents impair neural plasticity in a dose dependent manner.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Inflamación/metabolismo , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Animales , Antiinflamatorios/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Citocinas/inmunología , Citocinas/metabolismo , Dinoprostona/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ibuprofeno/farmacología , Inflamación/inmunología , Interleucina-1beta/metabolismo , Quinurenina/metabolismo , Lipopolisacáridos/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Plasticidad Neuronal/inmunología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...