Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biofabrication ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121863

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, a leading cause of cancer-related deaths globally. Initial lesions of PDAC develop within the exocrine pancreas' functional units, with tumor progression driven by interactions between PDAC and stromal cells. Effective therapies require anatomically and functionally relevant in vitro human models of the pancreatic cancer microenvironment. We employed tomographic volumetric bioprinting, a novel biofabrication method, to create human fibroblast-laden constructs mimicking the tubuloacinar structures of the exocrine pancreas. Human pancreatic ductal epithelial (HPDE) cells overexpressing the KRAS oncogene (HPDE-KRAS) were seeded in the multiacinar cavity to replicate pathological tissue. HPDE cell growth and organization within the structure were assessed, demonstrating the formation of a thin epithelium covering the acini inner surfaces. Immunofluorescence assays showed significantly higher alpha smooth muscle actin (α-SMA) vs. F-actin expression in fibroblasts co-cultured with cancerous versus wild-type HPDE cells. Additionally, α-SMA expression increased over time and was higher in fibroblasts closer to HPDE cells. Elevated interleukin (IL)-6 levels were quantified in supernatants from co-cultures of stromal and HPDE-KRAS cells. These findings align with inflamed tumor-associated myofibroblast behavior, serving as relevant biomarkers to monitor early disease progression and target drug efficacy. To our knowledge, this is the first demonstration of a 3D bioprinted model of exocrine pancreas that recapitulates its true 3-dimensional microanatomy and shows tumor triggered inflammation. .

2.
Eur J Pharm Biopharm ; : 114446, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122052

RESUMEN

Efficient tumour treatment is hampered by the poor selectivity of anticancer drugs, resulting in scarce tumour accumulation and undesired off-target effects. Nano-sized drug-delivery systems in the form of nanoparticles (NPs) have been proposed to improve drug distribution to solid tumours, by virtue of their ability of passive and active tumour targeting. Despite these advantages, literature studies indicated that less than 1% of the administered NPs can successfully reach the tumour mass, highlighting the necessity for more efficient drug transporters in cancer treatment. Living cells, such as blood cells, circulating immune cells, platelets, and stem cells, are often found as an infiltrating component in most solid tumours, because of their ability to naturally circumvent immune recognition, bypass biological barriers, and reach inaccessible tissues through innate tropism and active motility. Therefore, the tumour-homing ability of these cells can be harnessed to design living cell carriers able to improve the transport of drugs and NPs to tumours. Albeit promising, this approach is still in its beginnings and suffers from difficult scalability, high cost, and poor reproducibility. In this review, we present an overview of the most common cell transporters of drugs and NPs, and we discuss how different cell types interact with biological barriers to deliver cargoes of various natures to tumours. Finally, we analyse the different techniques used to load drugs or NPs in living cells and discuss their advantages and disadvantages.

3.
J Mater Chem B ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083365

RESUMEN

Physical and chemical hydrogels are promising platforms for tissue engineering/regenerative medicine (TERM). In particular, physical hydrogels are suitable for use in the design of drug delivery systems owing to their reversibility and responsiveness to applied stimuli and external environment. Alternatively, the use of chemical hydrogels represents a better strategy to produce stable 3D constructs in the TERM field. In this work, these two strategies were combined to develop multi-functional formulations integrating both drug delivery potential and TERM approaches in a single device. Specifically, a novel photo-sensitive poly(ether urethane) (PEU) was developed to form supramolecular networks with α-cyclodextrins (α-CDs). The PEU was successfully synthesized using Poloxamer® 407, 1,6-diisocyanatohexane and 2-hydroxyethyl methacrylate, as assessed by infrared spectroscopy, size exclusion chromatography and proton nuclear magnetic resonance (1H NMR) spectroscopy. Subsequently, PEU thermo-responsiveness was characterized through critical micelle temperature evaluation and dynamic light scattering analyses, which suggested the achievement of a good balance between molecular mass and overall hydrophobicity. Consequently, the formation of supramolecular domains with α-CDs was demonstrated through X-ray diffraction and 1H NMR spectroscopy. Supramolecular hydrogels with remarkably fast gelation kinetics (i.e., few minutes) were designed using a low PEU concentration (≤5% w/v). All formulations were found to be cytocompatible according to the ISO 10993-5 regulation. Notably, the hydrogels were observed to possess mechanical properties and self-healing ability, according to rheological tests, and their fast photo-crosslinking was evidenced (<60 s) by photo-rheology. A high curcumin payload (570 µg mL-1) was encapsulated in the hydrogels, which was released with highly tunable and progressive kinetics in a physiological-simulated environment for up to 5 weeks. Finally, a preliminary evaluation of hydrogel extrudability was performed using an extrusion-based bioprinter, obtaining 3D-printed structures showing good morphological fidelity to the original design. Overall, the developed hydrogel platform showed promising properties for application in the emerging field of regenerative pharmacology as (i) easily injectable drug-loaded formulations suitable for post-application stabilization through light irradiation, and (ii) biomaterial inks for the fabrication of patient-specific drug-loaded patches.

4.
ACS Appl Mater Interfaces ; 16(30): 39129-39139, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39039989

RESUMEN

Catheter-associated urinary tract infections represent a major share of nosocomial infections, and are associated with longer periods of hospitalization and a huge financial burden. Currently, there are only a handful of commercial materials that reduce biofilm formation on urinary catheters, mostly relying on silver alloys. Therefore, we combined silver-phenolated lignin nanoparticles with poly(carboxybetaine) zwitterions to build a composite antibiotic-free coating with bactericidal and antifouling properties. Importantly, the versatile lignin chemistry enabled the formation of the coating in situ, enabling both the nanoparticle grafting and the radical polymerization by using only the oxidative activity of laccase. The resulting surface efficiently prevented nonspecific protein adsorption and reduced the bacterial viability on the catheter surface by more than 2 logs under hydrodynamic flow, without exhibiting any apparent signs of cytotoxicity. Moreover, the said functionality was maintained over a week both in vitro and in vivo, whereby the animal models showed excellent biocompatibility.


Asunto(s)
Lacasa , Catéteres Urinarios , Catéteres Urinarios/microbiología , Animales , Lacasa/química , Plata/química , Plata/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Lignina/química , Ratones , Humanos , Biopelículas/efectos de los fármacos , Infecciones Urinarias/prevención & control , Infecciones Urinarias/tratamiento farmacológico , Escherichia coli/efectos de los fármacos , Nanopartículas/química , Staphylococcus aureus/efectos de los fármacos
5.
ACS Appl Mater Interfaces ; 16(27): 34656-34668, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38916599

RESUMEN

Catheter-associated urinary tract infections are the most common hospital-acquired infections and cause patient discomfort, increased morbidity, and prolonged stays, altogether posing a huge burden on healthcare services. Colonization occurs upon insertion, or later by ascending microbes from the rich periurethral flora, and is therefore virtually unavoidable by medical procedures. Importantly, the dwell time is a significant risk factor for bacteriuria because it gives biofilms time to develop and mature. This is why we engineer antibacterial and antibiofilm coating through ultrasound- and nanoparticle-assisted self-assembly on silicone surfaces and validate it thoroughly in vitro and in vivo. To this end, we combine bimetallic silver/gold nanoparticles, which exercise both biocidal and structural roles, with dopamine-modified gelatin in a facile and substrate-independent sonochemical coating process. The latter mussel-inspired bioadhesive potentiates the activity and durability of the coating while attenuating the intrinsic toxicity of silver. As a result, our approach effectively reduces biofilm formation in a hydrodynamic model of the human bladder and prevents bacteriuria in catheterized rabbits during a week of placement, outperforming conventional silicone catheters. These results substantiate the practical use of nanoparticle-biopolymer composites in combination with ultrasound for the antimicrobial functionalization of indwelling medical devices.


Asunto(s)
Antibacterianos , Biopelículas , Nanocompuestos , Plata , Infecciones Urinarias , Animales , Conejos , Infecciones Urinarias/prevención & control , Plata/química , Plata/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Nanocompuestos/química , Biopelículas/efectos de los fármacos , Humanos , Nanopartículas del Metal/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Oro/química , Bivalvos/química , Catéteres Urinarios/microbiología , Gelatina/química , Gelatina/farmacología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología
6.
Front Bioeng Biotechnol ; 12: 1346660, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646009

RESUMEN

Several diseases affect the alveoli, and the efficacy of medical treatments and pharmaceutical therapies is hampered by the lack of pre-clinical models able to recreate in vitro the diseases. Microfluidic devices, mimicking the key structural and compositional features of the alveoli, offer several advantages to medium and high-throughput analysis of new candidate therapies. Here, we developed an alveolus-on-a-chip recapitulating the microanatomy of the physiological tissue by including the epithelium, the fibrous interstitial layer and the capillary endothelium. A PDMS device was obtained assembling a top layer and a bottom layer obtained by replica molding. A polycaprolactone/gelatin (PCL-Gel) electrospun membrane was included within the two layers supporting the seeding of 3 cell phenotypes. Epithelial cells were grown on a fibroblast-laden collagen hydrogel located on the top side of the PCL-Gel mats while endothelial cells were seeded on the basolateral side of the membrane. The innovative design of the microfluidic device allows to replicate both cell-cell and cell-extracellular matrix interactions according to the in vivo cell arrangement along with the establishment of physiologically relevant air-liquid interface conditions. Indeed, high cell viability was confirmed for up to 10 days and the formation of a tight endothelial and epithelial barrier was assessed by immunofluorescence assays.

7.
Biomater Adv ; 154: 213620, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37690344

RESUMEN

Alveoli are the functional area of respiratory system where the gaseous exchanges take place at level of the alveolar-capillary barrier. The development of safe and effective therapeutic approaches for treating lung disease is currently limited due to the lack of realistic preclinical models for their testing and validation. In this work, tissue engineering approaches were exploited to develop a biomimetic platform that provide an appropriate mimicking of the extracellular environment and the multicellular architecture of human alveoli. Here, we propose the implementation of two biomimetic in vitro models to reproduce the features of the main anatomic portions of the physiological alveolar-capillary barrier. First, a co-culture barrier model was obtained by integrating an electrospun polycaprolactone-gelatin (PCL-Gel) membrane in a modified transwell insert (PCL-Gel TW) to mimic the alveolar basement membrane (coded as thin model). Alveolar epithelial (A549) and lung microvascular endothelial (HULEC-5a) cells were cultured on the apical and basolateral side of the PCL-Gel membrane, respectively, under physiologic air-liquid interface (ALI) conditions for 7 days. The ALI condition promoted the expression of type I and type II alveolar epithelial cell markers and the secretion of mucus in A549 cells. Increased cell viability and barrier properties in co-cultures of A549 and HULEC-5a compared to mono-cultures revealed the effectiveness of the model to reproduce in vitro physiological-relevant features of the alveolar-capillary barrier. The second portion of the alveolar-capillary barrier was developed implementing a tri-culture model (coded as thick model) including a type I collagen (COLL) hydrogel formulated to host lung fibroblasts (MRC-5). The thick barrier model was implemented by seeding HULEC-5a on the basolateral side of PCL-Gel TW and then pouring sequentially MRC-5-laden COLL hydrogel and A549 cells on the apical side of the electrospun membrane. The thick model was maintained up to 7 days at ALI and immunofluorescence staining of tight and adherent junctions demonstrated the formation of a tight barrier. Lastly, the ability of models to emulate pathological inflammatory conditions was validated by exposing the apical compartment of the PCL-Gel TW to lipopolysaccharide (LPS). The damage of A549 tight junctions, the increase of barrier permeability and IL-6 pro-inflammatory cytokine release was observed after 48 h exposure to LPS.


Asunto(s)
Biomimética , Lipopolisacáridos , Humanos , Técnicas de Cocultivo , Lipopolisacáridos/metabolismo , Alveolos Pulmonares/metabolismo , Hidrogeles
8.
Gels ; 9(9)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37754412

RESUMEN

In normal chronic wound healing pathways, the presence of strong and persistent inflammation states characterized by high Reactive Oxygen Species (ROS) concentrations is one of the major concerns hindering tissue regeneration. The administration of different ROS scavengers has been investigated over the years, but their effectiveness has been strongly limited by their short half-life caused by chronic wound environmental conditions. This work aimed at overcoming this criticism by formulating bioartificial hydrogels able to preserve the functionalities of the encapsulated scavenger (i.e., gallic acid-GA) and expand its therapeutic window. To this purpose, an amphiphilic poly(ether urethane) exposing -NH groups (4.5 × 1020 units/gpolymer) was first synthesized and blended with a low molecular weight hyaluronic acid. The role exerted by the solvent on system gelation mechanism and swelling capability was first studied, evidencing superior thermo-responsiveness for formulations prepared in saline solution compared to double demineralized water (ddH2O). Nevertheless, drug-loaded hydrogels were prepared in ddH2O as the best compromise to preserve GA from degradation while retaining gelation potential. GA was released with a controlled and sustained profile up to 48 h and retained its scavenger capability against hydroxyl, superoxide and 1'-diphenyl-2-picrylhydrazyl radicals at each tested time point. Moreover, the same GA amounts were able to significantly reduce intracellular ROS concentration upon oxidative stress induction. Lastly, the system was highly cytocompatible according to ISO regulation and GA-enriched extracts did not induce NIH-3T3 morphology changes.

9.
Front Cell Dev Biol ; 11: 1274467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664466

RESUMEN

[This corrects the article DOI: 10.3389/fcell.2023.1125801.].

10.
Pharmaceutics ; 15(6)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37376166

RESUMEN

Chronic wounds (CWs) are a growing issue for the health care system. Their treatment requires a synergic approach to reduce both inflammation and the bacterial burden. In this work, a promising system for treating CWs was developed, comprising cobalt-lignin nanoparticles (NPs) embedded in a supramolecular (SM) hydrogel. First, NPs were obtained through cobalt reduction with phenolated lignin, and their antibacterial properties were tested against both Gram-negative and Gram-positive strains. The anti-inflammatory capacity of the NPs was proven through their ability to inhibit myeloperoxidase (MPO) and matrix metalloproteases (MMPs), which are enzymes involved in the inflammatory process and wound chronicity. Then, the NPs were loaded in an SM hydrogel based on a blend of α-cyclodextrin and custom-made poly(ether urethane)s. The nano-enabled hydrogel showed injectability, self-healing properties, and linear release of the loaded cargo. Moreover, the SM hydrogel's characteristics were optimized to absorb proteins when in contact with liquid, suggesting its capacity to uptake harmful enzymes from the wound exudate. These results render the developed multifunctional SM material an interesting candidate for the management of CWs.

11.
Materials (Basel) ; 16(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903139

RESUMEN

Temperature and light responsiveness are widely exploited stimuli to tune the physico-chemical properties of double network hydrogels. In this work, new amphiphilic poly(ether urethane)s bearing photo-sensitive moieties (i.e., thiol, acrylate and norbornene functionalities) were engineered by exploiting the versatility of poly(urethane) chemistry and carbodiimide-mediated green functionalization procedures. Polymers were synthesized according to optimized protocols maximizing photo-sensitive group grafting while preserving their functionality (approx. 1.0 × 1019, 2.6 × 1019 and 8.1 × 1017 thiol, acrylate and norbornene groups/gpolymer), and exploited to prepare thermo- and Vis-light-responsive thiol-ene photo-click hydrogels (18% w/v, 1:1 thiol:ene molar ratio). Green light-induced photo-curing allowed the achievement of a much more developed gel state with improved resistance to deformation (ca. 60% increase in critical deformation, γL). Triethanolamine addition as co-initiator to thiol-acrylate hydrogels improved the photo-click reaction (i.e., achievement of a better-developed gel state). Differently, L-tyrosine addition to thiol-norbornene solutions slightly hindered cross-linking, resulting in less developed gels with worse mechanical performances (~62% γL decrease). In their optimized composition, thiol-norbornene formulations resulted in prevalent elastic behavior at lower frequency compared to thiol-acrylate gels due to the formation of purely bio-orthogonal instead of heterogeneous gel networks. Our findings highlight that exploiting the same thiol-ene photo-click chemistry, a fine tuning of the gel properties is possible by reacting specific functional groups.

12.
Front Cell Dev Biol ; 11: 1125801, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968200

RESUMEN

Over the past years a growing number of studies highlighted the pivotal role of intracellular trafficking in cell physiology. Among the distinct transport itineraries connecting the endocytic system, both internalization (endocytosis) and recycling (endocytic recycling) pathways were found fundamental to ensure cellular sensing, cell-to-cell communication, cellular division, and collective cell migration in tissue specific-contexts. Consistently, the dysregulation of endocytic trafficking pathways is correlated with several human diseases including both cancers and neurodegeneration. Aimed at suppress specific intracellular trafficking routes involved in disease onset and progression, huge efforts have been made to identify small molecule inhibitors with suitable pharmacological properties for in vivo administration. Here, we review most used drugs and recently discovered small molecules able to block endocytosis and endocytic recycling pathways. We characterize such pharmacological inhibitors by emphasizing their target specificity, molecular affinity, biological activity and efficacy in both in vitro and in vivo experimental models.

13.
Gels ; 9(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36661825

RESUMEN

Bioartificial hydrogels are hydrophilic systems extensively studied for regenerative medicine due to the synergic combination of features of synthetic and natural polymers. Injectability is another crucial property for hydrogel mini-invasive administration. This work aimed at engineering injectable bioartificial in situ cross-linkable hydrogels by implementing green and eco-friendly approaches. Specifically, the versatile poly(ether urethane) (PEU) chemistry was exploited for the development of an amphiphilic PEU, while hyaluronic acid was selected as natural component. Both polymers were functionalized to expose thiol and catechol groups through green water-based carbodiimide-mediated grafting reactions. Functionalization was optimized to maximize grafting yield while preserving group functionality. Then, polymer miscibility was studied at the macro-, micro-, and nano-scale, suggesting the formation of hydrogen bonds among polymeric chains. All hydrogels could be injected through G21 and G18 needles in a wide temperature range (4-25 °C) and underwent sol-to-gel transition at 37 °C. The addition of an oxidizing agent to polymer solutions did not improve the gelation kinetics, while it negatively affected hydrogel stability in an aqueous environment, suggesting the occurrence of oxidation-triggered polymer degradation. In the future, the bioartificial hydrogels developed herein could find application in the biomedical and aesthetic medicine fields as injectable formulations for therapeutic agent delivery.

14.
Biomater Sci ; 11(1): 208-224, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36420859

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) mainly develops in the head of the pancreas, within the acino-ductal unit composed of acinar and ductal cells surrounded by pancreatic stellate cells (PSCs). PSCs strongly influence the tumor microenvironment by triggering an intense stromal deposition, which plays a key role in tumor progression and limits drug perfusion. We have developed a microfluidic in vitro model recreating the in vivo tumor-stroma crosstalk to replicate the steps of PDAC evolution towards the establishment of an efficient in vitro platform for innovative therapy validation. The multilayer PDAC-on-chip was designed to culture the PDAC cells and the PSCs embedded in a type I collagen gel in the top and bottom layers, respectively. The presence of a biomimetic nanofibrous membrane in the middle of the chip permits the control of interactions between the two cell lines and the easy analysis of the effects of the crosstalk on cell behavior. First, the PDAC-stromal cell relationship was evaluated under co-culture conditions on 24-well inserts including the PCL/Gel electrospun membrane. This simplified model shows that human fibroblasts change their morphology and secrete larger amounts of IL-6 cytokines in the presence of tumor cells, confirming the activation of stromal cells under co-culture. Then, the PDAC-on-chip system was validated by demonstrating that human fibroblasts seeded in a 3D collagen matrix in the bottom microchannel also change to a myofibroblast-like shape with increased expression of α-SMA and secrete larger amounts of IL-6 cytokines. This microfluidic system is suitable for the evaluation of drug efficacy and serves as a powerful tool for understanding the early evolution steps of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Interleucina-6 , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Páncreas/metabolismo , Microambiente Tumoral , Línea Celular Tumoral , Neoplasias Pancreáticas
15.
Pharmaceutics ; 14(9)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36145638

RESUMEN

An injectable delivery platform for promoting delayed bone healing has been developed by combining a thermosensitive polyurethane-based hydrogel with strontium-substituted mesoporous bioactive glasses (MBG_Sr) for the long-term and localized co-delivery of pro-osteogenic Sr2+ ions and an osteogenesis-enhancing molecule, N-Acetylcysteine (NAC). The incorporation of MBG_Sr microparticles, with a final concentration of 20 mg/mL, did not alter the overall properties of the thermosensitive hydrogel, in terms of sol-to-gel transition at a physiological-like temperature, gelation time, injectability and stability in aqueous environment at 37 °C. In particular, the hydrogel formulations (15% w/v polymer concentration) showed fast gelation in physiological conditions (1 mL underwent complete sol-to-gel transition within 3-5 min at 37 °C) and injectability in a wide range of temperatures (5-37 °C) through different needles (inner diameter in the range 0.4-1.6 mm). In addition, the MBG_Sr embedded into the hydrogel retained their full biocompatibility, and the released concentration of Sr2+ ions were effective in promoting the overexpression of pro-osteogenic genes from SAOS2 osteoblast-like cells. Finally, when incorporated into the hydrogel, the MBG_Sr loaded with NAC maintained their release properties, showing a sustained ion/drug co-delivery along 7 days, at variance with the MBG particles as such, showing a strong burst release in the first hours of soaking.

16.
J Funct Biomater ; 13(3)2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36135570

RESUMEN

A deeply interconnected flexible transducer of polydimethylsiloxane (PDMS) and poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) was obtained as a material for the application of soft robotics. Firstly, transducers were developed by crosslinking PEDOT:PSS with 3-glycidyloxypropryl-trimethoxysilane (GPTMS) (1, 2 and 3% v/v) and using freeze-drying to obtain porous sponges. The PEDOT:PSS sponges were morphologically characterized, showing porosities mainly between 200 and 600 µm2; such surface area dimensions tend to decrease with increasing degrees of crosslinking. A stability test confirmed a good endurance for up to 28 days for the higher concentrations of the crosslinker tested. Consecutively, the sponges were electromechanically characterized, showing a repeatable and linear resistance variation by the pressure triggers within the limits of their working range (∆RR0 max = 80% for 1-2% v/v of GPTMS). The sponges containing 1% v/v of GPTMS were intertwined with a silicon elastomer to increase their elasticity and water stability. The flexible transducer obtained with this method exhibited moderately lower sensibility and repeatability than the PEDOT:PSS sponges, but the piezoresistive response remained stable under mechanical compression. Furthermore, the transducer displayed a linear behavior when stressed within the limits of its working range. Therefore, it is still valid for pressure sensing and contact detection applications. Lastly, the flexible transducer was submitted to preliminary biological tests that indicate a potential for safe, in vivo sensing applications.

17.
Macromol Biosci ; 22(10): e2200039, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35488769

RESUMEN

In recent years, 3D printing techniques experience a growing interest in several sectors, including the biomedical one. Their main advantage resides in the possibility to obtain complex and personalized structures in a cost-effective way impossible to achieve with traditional production methods. This is especially true for fused deposition modeling (FDM), one of the most diffused 3D printing methods. The easy customization of the final products' geometry, composition, and physicochemical properties is particularly interesting for the increasingly personalized approach adopted in modern medicine. Thermoplastic polymers are the preferred choice for FDM applications, and a wide selection of biocompatible and biodegradable materials is available to this aim. Moreover, these polymers can also be easily modified before and after printing to better suit the body environment and the mechanical properties of biological tissues. This review focuses on the use of thermoplastic aliphatic polyesters for FDM applications in the biomedical field. In detail, the use of poly(ε-caprolactone), poly(lactic acid), poly(lactic-co-glycolic acid), poly(hydroxyalkanoate)s, thermoplastic poly(ester urethane)s, and their blends is thoroughly surveyed, with particular attention to their main features, applicability, and workability. The state-of-the-art is presented and current challenges in integrating the additive manufacturing technology in the medical practice are discussed.


Asunto(s)
Poliésteres , Impresión Tridimensional , Ésteres , Poliésteres/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros/química , Uretano
18.
Front Bioeng Biotechnol ; 9: 742135, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869257

RESUMEN

The rapidly increasing resistance of bacteria to currently approved antibiotic drugs makes surgical interventions and the treatment of bacterial infections increasingly difficult. In recent years, complementary strategies to classical antibiotic therapy have, therefore, gained importance. One of these strategies is the use of medicinal honey in the treatment of bacterially colonized wounds. One of the several bactericidal effects of honey is based on the in situ generation of hydrogen peroxide through the activity of the enzyme glucose oxidase. The strategy underlying this work is to mimic this antibacterial redox effect of honey in an injectable, biocompatible, and rapidly forming hydrogel. The hydrogel was obtained by thiol-ene click reaction between hyperbranched polyethylene glycol diacrylate (HB PEGDA), synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization, and thiolated hyaluronic acid (HA-SH). After mixing 500 µL HB PEGDA (10%, w/w) and 500 µL HA-SH (1%, w/w) solutions, hydrogels formed in ∼60 s (HB PEGDA/HA-SH 10.0-1.0), as assessed by the tube inverting test. The HB PEGDA/HA-SH 10.0-1.0 hydrogel (200 µL) was resistant to in vitro dissolution in water for at least 64 days, absorbing up to 130 wt% of water. Varying glucose oxidase (GO) amounts (0-500 U/L) and constant glucose content (2.5 wt%) were loaded into HB PEGDA and HA-SH solutions, respectively, before hydrogel formation. Then, the release of H2O2 was evaluated through a colorimetric pertitanic acid assay. The GO content of 250 U/L was selected, allowing the formation of 10.8 ± 1.4 mmol H2O2/L hydrogel in 24 h, under static conditions. The cytocompatibility of HB PEGDA/HA-SH 10.0-1.0 hydrogels loaded with different GO activities (≤ 500 U/L) at a constant glucose amount (2.5 wt%) was investigated by in vitro assays at 24 h with L929 and HaCaT cell lines, according to DIN EN ISO 10993-5. The tests showed cytocompatibility for GO enzyme activity up to 250 U/L for both cell lines. The antibacterial activity of HB PEGDA/HA-SH 10.0-1.0 hydrogels loaded with increasing amounts of GO was demonstrated against various gram-positive bacteria (S. aureus and S. epidermidis), antibiotic-resistant gram-positive bacteria (MRSA and MRSE), gram-negative bacteria (P. aeruginosa, E. coli, and A. baumanii), and antibiotic-resistant gram-negative strains (P. aeruginosa and E. coli) using agar diffusion tests. For all gram-positive bacterial strains, increasing efficacy was measured with increasing GO activity. For the two P. aeruginosa strains, efficacy was shown only from an enzyme activity of 125 U/L and for E. coli and A. baumanii, efficacy was shown only from 250 U/L enzyme activity. HB PEGDA/HA-SH 10.0-1.0 hydrogels loaded with ≤250 U/L GO and 2.5 wt% glucose are promising formulations due to their fast-forming properties, cytocompatibility, and ability to produce antibacterial H2O2, warranting future investigations for bacterial infection treatment, such as wound care.

19.
Mater Sci Eng C Mater Biol Appl ; 127: 112194, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34225848

RESUMEN

A strategy to enhance drug effectiveness while minimizing controversial effects consists in exploiting host-guest interactions. Moreover, these phenomena can induce the self-assembly of physical hydrogels as effective tools to treat various pathologies (e.g., chronic wounds or cancer). Here, two Poloxamers®/Pluronics® (P407/F127 and P188/F68) were utilized to synthesize various LEGO-like poly(ether urethane)s (PEUs) to develop a library of tunable and injectable supramolecular hydrogels for drug delivery. Three PEUs were synthesized by chain extending Poloxamer/Pluronic with 1,6-cyclohexanedimethanol or N-Boc serinol. Other two amino-functionalized and highly responsive polymers were obtained thorough Boc-group cleavage. For hydrogel design, the spontaneous self-assembly of the poly(ethylene oxide) domains of PEUs with α-cyclodextrins was exploited to form poly(pseudo)rotaxanes (PPRs). PPR-derived channel-like crystals were characterized by X-Ray powder diffraction, Infra-Red and Proton Nuclear Magnetic Resonance spectroscopies. Cytocompatible hydrogel formulations were designed at PEU concentrations between 1% and 5% w/v and α-cyclodextrin at 10% w/v. Supramolecular gels showed good mechanical performances (storage modulus up to 20 kPa) coupled with marked thixotropic and self-healing properties (mechanical recovery over 80% within 30 s after cyclic rupture) as assessed through rheology. Hydrogels exhibited stability and high responsiveness in watery environment up to 5 days: the release of less stable components as suitable drug carriers was coupled with high swelling (doubling the content of fluids with respect to their dry mass) and shape retention. Curcumin was encapsulated into the hydrogels at high concentration (80 µg ml-1) through its complexation with α-cyclodextrins and delivery tests showed controllable and progressive release profiles up to four days.


Asunto(s)
Curcumina , alfa-Ciclodextrinas , Éter , Hidrogeles , Polietilenglicoles , Uretano
20.
Bioact Mater ; 6(9): 3013-3024, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34258478

RESUMEN

The design of multi-stimuli-responsive vehicles for the controlled and localized release of drugs is a challenging issue increasingly catching the attention of many research groups working on the advanced treatment of hard-to-close wounds. In this work, a thermo- and pH-responsive hydrogel (P-CHP407) was prepared from an ad hoc synthesized amphiphilic poly(ether urethane) (CHP407) exposing a significant amount of -COOH groups (8.8 ± 0.9 nmol/gpolymer). The exposure of acid moieties in P-CHP407 hydrogel led to slightly lower initial gelation temperature (12.1 °C vs. 14.6 °C, respectively) and gelation rate than CHP407 hydrogel, as rheologically assessed. Nanoscale hydrogel characterization by Low Field NMR (LF-NMR) spectroscopy suggested that the presence of carboxylic groups in P-CHP407 caused the formation of bigger micelles with a thicker hydrated shell than CHP407 hydrogels, as further proved by Dynamic Light Scattering analyses. In addition, P-CHP407 hydrogel showed improved capability to change its internal pH compared to CHP407 one when incubated with an alkaline buffer (pH 8) (e.g., pHchange_5min = 3.76 and 1.32, respectively). Moreover, LF-NMR characterization suggested a stronger alkaline-pH-induced interaction of water molecules with micelles exposing -COOH groups. Lastly, the hydrogels were found biocompatible according to ISO 10993 and able to load and release Ibuprofen: delivery kinetics of Ibuprofen was enhanced by P-CHP407 hydrogels at alkaline pH, suggesting their potential use as smart delivery systems in the treatment of chronic infected wounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...