Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nat Commun ; 15(1): 4051, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744839

RESUMEN

Intestinal homeostasis is maintained by the response of gut-associated lymphoid tissue to bacteria transported across the follicle associated epithelium into the subepithelial dome. The initial response to antigens and how bacteria are handled is incompletely understood. By iterative application of spatial transcriptomics and multiplexed single-cell technologies, we identify that the double negative 2 subset of B cells, previously associated with autoimmune diseases, is present in the subepithelial dome in health. We show that in this location double negative 2 B cells interact with dendritic cells co-expressing the lupus autoantigens DNASE1L3 and C1q and microbicides. We observe that in humans, but not in mice, dendritic cells expressing DNASE1L3 are associated with sampled bacteria but not DNA derived from apoptotic cells. We propose that fundamental features of autoimmune diseases are microbiota-associated, interacting components of normal intestinal immunity.


Asunto(s)
Linfocitos B , Células Dendríticas , Endodesoxirribonucleasas , Microbioma Gastrointestinal , Animales , Humanos , Ratones , Linfocitos B/inmunología , Linfocitos B/metabolismo , Microbioma Gastrointestinal/inmunología , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Tejido Linfoide/inmunología , Tejido Linfoide/metabolismo , Femenino , Ratones Endogámicos C57BL , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Masculino
2.
Mol Ther ; 31(12): 3531-3544, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37805713

RESUMEN

In vivo apoptosis of human mesenchymal stromal cells (MSCs) plays a critical role in delivering immunomodulation. Yet, caspase activity not only mediates the dying process but also death-independent functions that may shape the immunogenicity of apoptotic cells. Therefore, a better characterization of the immunological profile of apoptotic MSCs (ApoMSCs) could shed light on their mechanistic action and therapeutic applications. We analyzed the transcriptomes of MSCs undergoing apoptosis and identified several immunomodulatory factors and chemokines dependent on caspase activation following Fas stimulation. The ApoMSC secretome inhibited human T cell proliferation and activation, and chemoattracted monocytes in vitro. Both immunomodulatory activities were dependent on the cyclooxygenase2 (COX2)/prostaglandin E2 (PGE2) axis. To assess the clinical relevance of ApoMSC signature, we used the peripheral blood mononuclear cells (PBMCs) from a cohort of fistulizing Crohn's disease (CD) patients who had undergone MSC treatment (ADMIRE-CD). Compared with healthy donors, MSCs exposed to patients' PBMCs underwent apoptosis and released PGE2 in a caspase-dependent manner. Both PGE2 and apoptosis were significantly associated with clinical responses to MSCs. Our findings identify a new mechanism whereby caspase activation delivers ApoMSC immunosuppression. Remarkably, such molecular signatures could implicate translational tools for predicting patients' clinical responses to MSC therapy in CD.


Asunto(s)
Enfermedad de Crohn , Células Madre Mesenquimatosas , Humanos , Enfermedad de Crohn/genética , Enfermedad de Crohn/terapia , Dinoprostona/metabolismo , Leucocitos Mononucleares/metabolismo , Secretoma , Células Madre Mesenquimatosas/metabolismo , Inmunomodulación , Apoptosis , Caspasas
3.
NAR Cancer ; 5(3): zcad040, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37502711

RESUMEN

Most cancer types exhibit aberrant transcriptional activity, including derepression of retrotransposable elements (RTEs). However, the degree, specificity and potential consequences of RTE transcriptional activation may differ substantially among cancer types and subtypes. Representing one extreme of the spectrum, we characterize the transcriptional activity of RTEs in cohorts of esophageal adenocarcinoma (EAC) and its precursor Barrett's esophagus (BE) from the OCCAMS (Oesophageal Cancer Clinical and Molecular Stratification) consortium, and from TCGA (The Cancer Genome Atlas). We found exceptionally high RTE inclusion in the EAC transcriptome, driven primarily by transcription of genes incorporating intronic or adjacent RTEs, rather than by autonomous RTE transcription. Nevertheless, numerous chimeric transcripts straddling RTEs and genes, and transcripts from stand-alone RTEs, particularly KLF5- and SOX9-controlled HERVH proviruses, were overexpressed specifically in EAC. Notably, incomplete mRNA splicing and EAC-characteristic intronic RTE inclusion was mirrored by relative loss of the respective fully-spliced, functional mRNA isoforms, consistent with compromised cellular fitness. Defective RNA splicing was linked with strong transcriptional activation of a HERVH provirus on Chr Xp22.32 and defined EAC subtypes with distinct molecular features and prognosis. Our study defines distinguishable RTE transcriptional profiles of EAC, reflecting distinct underlying processes and prognosis, thus providing a framework for targeted studies.

4.
Genome Med ; 15(1): 40, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277866

RESUMEN

BACKGROUND: The crosstalk between cancer and the tumour immune microenvironment (TIME) has attracted significant interest in the latest years because of its impact on cancer evolution and response to treatment. Despite this, cancer-specific tumour-TIME interactions and their mechanistic insights are still poorly understood. METHODS: Here, we compute the significant interactions occurring between cancer-specific genetic drivers and five anti- and pro-tumour TIME features in 32 cancer types using Lasso regularised ordinal regression. Focusing on head and neck squamous cancer (HNSC), we rebuild the functional networks linking specific TIME driver alterations to the TIME state they associate with. RESULTS: The 477 TIME drivers that we identify are multifunctional genes whose alterations are selected early in cancer evolution and recur across and within cancer types. Tumour suppressors and oncogenes have an opposite effect on the TIME and the overall anti-tumour TIME driver burden is predictive of response to immunotherapy. TIME driver alterations predict the immune profiles of HNSC molecular subtypes, and perturbations in keratinization, apoptosis and interferon signalling underpin specific driver-TIME interactions. CONCLUSIONS: Overall, our study delivers a comprehensive resource of TIME drivers, gives mechanistic insights into their immune-regulatory role, and provides an additional framework for patient prioritisation to immunotherapy. The full list of TIME drivers and associated properties are available at http://www.network-cancer-genes.org .


Asunto(s)
Recurrencia Local de Neoplasia , Oncogenes , Humanos , Recurrencia Local de Neoplasia/genética , Inmunoterapia , Microambiente Tumoral/genética
5.
Evol Med Public Health ; 10(1): 221-230, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35557512

RESUMEN

Background and objectives: Hepatocellular carcinoma occurs frequently in prosimians, but the cause of these liver cancers in this group is unknown. Characterizing the genetic changes associated with hepatocellular carcinoma in prosimians may point to possible causes, treatments and methods of prevention, aiding conservation efforts that are particularly crucial to the survival of endangered lemurs. Although genomic studies of cancer in non-human primates have been hampered by a lack of tools, recent studies have demonstrated the efficacy of using human exome capture reagents across primates. Methodology: In this proof-of-principle study, we applied human exome capture reagents to tumor-normal pairs from five lemurs with hepatocellular carcinoma to characterize the mutational landscape of this disease in lemurs. Results: Several genes implicated in human hepatocellular carcinoma, including ARID1A, TP53 and CTNNB1, were mutated in multiple lemurs, and analysis of cancer driver genes mutated in these samples identified enrichment of genes involved with TP53 degradation and regulation. In addition to these similarities with human hepatocellular carcinoma, we also noted unique features, including six genes that contain mutations in all five lemurs. Interestingly, these genes are infrequently mutated in human hepatocellular carcinoma, suggesting potential differences in the etiology and/or progression of this cancer in lemurs and humans. Conclusions and implications: Collectively, this pilot study suggests that human exome capture reagents are a promising tool for genomic studies of cancer in lemurs and other non-human primates. Lay Summary: Hepatocellular carcinoma occurs frequently in prosimians, but the cause of these liver cancers is unknown. In this proof-of-principle study, we applied human DNA sequencing tools to tumor-normal pairs from five lemurs with hepatocellular carcinoma and compared the lemur mutation profiles to those of human hepatocellular carcinomas.

6.
Trends Cell Biol ; 32(12): 979-987, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35589467

RESUMEN

A fundamental requirement for cancer initiation is the activation of developmental programmes by mutant cells. Oncogenic signals often confer an undifferentiated, stem cell-like phenotype that supports the long-term proliferative potential of cancer cells. Although cancer is a genetically driven disease, mutations in cancer-driver genes alone are insufficient for tumour formation, and the proliferation of cells harbouring oncogenic mutations depends on their microenvironment. In this Opinion article we discuss how the reprogrammed status of cancer cells not only represents the essence of their tumorigenicity but triggers 'reflected stemness' in their surrounding normal counterparts. We propose that this reciprocal interaction underpins the establishment of the tumour microenvironment (TME).


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/genética , Neoplasias/patología , Células Madre/patología , Fenotipo , Células Madre Neoplásicas
7.
Nat Commun ; 13(1): 781, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140207

RESUMEN

Multiplexed imaging technologies enable the study of biological tissues at single-cell resolution while preserving spatial information. Currently, high-dimension imaging data analysis is technology-specific and requires multiple tools, restricting analytical scalability and result reproducibility. Here we present SIMPLI (Single-cell Identification from MultiPLexed Images), a flexible and technology-agnostic software that unifies all steps of multiplexed imaging data analysis. After raw image processing, SIMPLI performs a spatially resolved, single-cell analysis of the tissue slide as well as cell-independent quantifications of marker expression to investigate features undetectable at the cell level. SIMPLI is highly customisable and can run on desktop computers as well as high-performance computing environments, enabling workflow parallelisation for large datasets. SIMPLI produces multiple tabular and graphical outputs at each step of the analysis. Its containerised implementation and minimum configuration requirements make SIMPLI a portable and reproducible solution for multiplexed imaging data analysis. Software is available at "SIMPLI [ https://github.com/ciccalab/SIMPLI ]".


Asunto(s)
Diagnóstico por Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Análisis de la Célula Individual , Anticuerpos , Colon/diagnóstico por imagen , Colon/patología , Análisis de Datos , Humanos , Mucosa Intestinal/diagnóstico por imagen , Mucosa Intestinal/patología , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Reproducibilidad de los Resultados , Programas Informáticos , Linfocitos T/patología , Flujo de Trabajo
8.
Genome Biol ; 23(1): 35, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35078504

RESUMEN

BACKGROUND: Genetic alterations of somatic cells can drive non-malignant clone formation and promote cancer initiation. However, the link between these processes remains unclear and hampers our understanding of tissue homeostasis and cancer development. RESULTS: Here, we collect a literature-based repertoire of 3355 well-known or predicted drivers of cancer and non-cancer somatic evolution in 122 cancer types and 12 non-cancer tissues. Mapping the alterations of these genes in 7953 pan-cancer samples reveals that, despite the large size, the known compendium of drivers is still incomplete and biased towards frequently occurring coding mutations. High overlap exists between drivers of cancer and non-cancer somatic evolution, although significant differences emerge in their recurrence. We confirm and expand the unique properties of drivers and identify a core of evolutionarily conserved and essential genes whose germline variation is strongly counter-selected. Somatic alteration in even one of these genes is sufficient to drive clonal expansion but not malignant transformation. CONCLUSIONS: Our study offers a comprehensive overview of our current understanding of the genetic events initiating clone expansion and cancer revealing significant gaps and biases that still need to be addressed. The compendium of cancer and non-cancer somatic drivers, their literature support, and properties are accessible in the Network of Cancer Genes and Healthy Drivers resource at http://www.network-cancer-genes.org/ .


Asunto(s)
Neoplasias , Oncogenes , Evolución Clonal , Humanos , Mutación , Neoplasias/genética , Neoplasias/patología
9.
Dev Cell ; 56(24): 3307-3308, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34932947

RESUMEN

With age, clones carrying somatic mutations in well-known cancer driver genes progressively populate adult tissues, yet cancer transformation is rare. In a recent issue of Nature, Colom et al. showed that competition between mutated clones with different fitness could act as a tumor-protective mechanism.


Asunto(s)
Neoplasias , Adulto , Transformación Celular Neoplásica/genética , Células Clonales , Humanos , Mutación/genética , Neoplasias/genética , Oncogenes
10.
Gastroenterology ; 161(4): 1179-1193, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34197832

RESUMEN

BACKGROUND & AIMS: Colorectal cancer (CRC) shows variable response to immune checkpoint blockade, which can only partially be explained by high tumor mutational burden (TMB). We conducted an integrated study of the cancer tissue and associated tumor microenvironment (TME) from patients treated with pembrolizumab (KEYNOTE 177 clinical trial) or nivolumab to dissect the cellular and molecular determinants of response to anti- programmed cell death 1 (PD1) immunotherapy. METHODS: We selected multiple regions per tumor showing variable T-cell infiltration for a total of 738 regions from 29 patients, divided into discovery and validation cohorts. We performed multiregional whole-exome and RNA sequencing of the tumor cells and integrated these with T-cell receptor sequencing, high-dimensional imaging mass cytometry, detection of programmed death-ligand 1 (PDL1) interaction in situ, multiplexed immunofluorescence, and computational spatial analysis of the TME. RESULTS: In hypermutated CRCs, response to anti-PD1 immunotherapy was not associated with TMB but with high clonality of immunogenic mutations, clonally expanded T cells, low activation of Wnt signaling, deregulation of the interferon gamma pathway, and active immune escape mechanisms. Responsive hypermutated CRCs were also rich in cytotoxic and proliferating PD1+CD8 T cells interacting with PDL1+ antigen-presenting macrophages. CONCLUSIONS: Our study clarified the limits of TMB as a predictor of response of CRC to anti-PD1 immunotherapy. It identified a population of antigen-presenting macrophages interacting with CD8 T cells that consistently segregate with response. We therefore concluded that anti-PD1 agents release the PD1-PDL1 interaction between CD8 T cells and macrophages to promote cytotoxic antitumor activity.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Fenómenos Inmunogenéticos , Inmunogenética , Nivolumab/uso terapéutico , Microambiente Tumoral , Anticuerpos Monoclonales Humanizados/efectos adversos , Biomarcadores de Tumor/genética , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Ensayos Clínicos como Asunto , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Citotoxicidad Inmunológica/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Mutación , Nivolumab/efectos adversos , Valor Predictivo de las Pruebas , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , RNA-Seq , Reproducibilidad de los Resultados , Factores de Tiempo , Transcriptoma , Resultado del Tratamiento , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Secuenciación del Exoma
11.
Genome Med ; 13(1): 12, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33517897

RESUMEN

BACKGROUND: Identifying the complete repertoire of genes that drive cancer in individual patients is crucial for precision oncology. Most established methods identify driver genes that are recurrently altered across patient cohorts. However, mapping these genes back to patients leaves a sizeable fraction with few or no drivers, hindering our understanding of cancer mechanisms and limiting the choice of therapeutic interventions. RESULTS: We present sysSVM2, a machine learning software that integrates cancer genetic alterations with gene systems-level properties to predict drivers in individual patients. Using simulated pan-cancer data, we optimise sysSVM2 for application to any cancer type. We benchmark its performance on real cancer data and validate its applicability to a rare cancer type with few known driver genes. We show that drivers predicted by sysSVM2 have a low false-positive rate, are stable and disrupt well-known cancer-related pathways. CONCLUSIONS: sysSVM2 can be used to identify driver alterations in patients lacking sufficient canonical drivers or belonging to rare cancer types for which assembling a large enough cohort is challenging, furthering the goals of precision oncology. As resources for the community, we provide the code to implement sysSVM2 and the pre-trained models in all TCGA cancer types ( https://github.com/ciccalab/sysSVM2 ).


Asunto(s)
Genes Relacionados con las Neoplasias , Neoplasias/genética , Estudios de Cohortes , Simulación por Computador , Bases de Datos Genéticas , Humanos , Polimorfismo de Nucleótido Simple/genética , Curva ROC , Reproducibilidad de los Resultados , Máquina de Vectores de Soporte
12.
Cancer Cell ; 39(2): 125-129, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33220180

RESUMEN

Gene alterations play a prominent role in driving cancer initiation and progression. However, the genetic events that occur in normal cells prior to tumorigenesis are still unknown. Recent studies have started to map somatic mutations in normal human tissues, and here we discuss their implications for our understanding of tumorigenesis.


Asunto(s)
Carcinogénesis/genética , Carcinogénesis/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Mutación/genética , Neoplasias/genética , Neoplasias/patología , Animales , Regulación Neoplásica de la Expresión Génica/genética , Humanos
13.
Glycobiology ; 31(3): 200-210, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32776095

RESUMEN

Aberrant mucin-type O-linked glycosylation is a common occurrence in cancer where the upregulation of sialyltransferases is often seen leading to the early termination of O-glycan chains. Mucin-type O-linked glycosylation is not limited to mucins and occurs on many cell surface glycoproteins including EGFR, where the number of sites can be limited. Upon EGF ligation, EGFR induces a signaling cascade and may also translocate to the nucleus where it directly regulates gene transcription, a process modulated by Galectin-3 and MUC1 in some cancers. Here, we show that upon EGF binding, breast cancer cells carrying different O-glycans respond by transcribing different gene expression signatures. MMP10, the principal gene upregulated when cells carrying sialylated core 1 glycans were stimulated with EGF, is also upregulated in ER-positive breast carcinoma reported to express high levels of ST3Gal1 and hence mainly core 1 sialylated O-glycans. In contrast, isogenic cells engineered to carry core 2 glycans upregulate CX3CL1 and FGFBP1 and these genes are upregulated in ER-negative breast carcinomas, also known to express longer core 2 O-glycans. Changes in O-glycosylation did not significantly alter signal transduction downstream of EGFR in core 1 or core 2 O-glycan expressing cells. However, striking changes were observed in the formation of an EGFR/galectin-3/MUC1/ß-catenin complex at the cell surface that is present in cells carrying short core 1-based O-glycans but absent in core 2 carrying cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Mucina-1/metabolismo , Neoplasias de la Mama/patología , Receptores ErbB/metabolismo , Femenino , Glicosilación , Humanos , Receptores de Estrógenos/metabolismo
14.
iScience ; 23(11): 101661, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33134891

RESUMEN

Dr Francesca Ciccarelli (The Francis Crick Institute, UK) and Dr James De Gregori (University of Colorado, USA) interview 3 top scientists in clinical (Dr Charles Swanton, The Francis Crick Institute, UK), molecular (Dr Kornelia Polyak, Dana-Farber Cancer Institute, USA), and evolutionary cancer research (Dr Carlo Maley, Arizona State University, USA) to discuss the current status of knowledge, the challenges, and the opportunities to move the field forward.

15.
J Invest Dermatol ; 140(4): 816-826.e3, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31539532

RESUMEN

Psoriasis is an immune-mediated skin disorder associated with severe systemic comorbidities. Whereas IL-36 is a key disease driver, the pathogenic role of this cytokine has mainly been investigated in skin. Thus, its effects on systemic immunity and extracutaneous disease manifestations remain poorly understood. To address this issue, we investigated the consequences of excessive IL-36 activity in circulating immune cells. We initially focused our attention on generalized pustular psoriasis (GPP), a clinical variant associated with pervasive upregulation of IL-36 signaling. By undertaking blood and neutrophil RNA sequencing, we demonstrated that affected individuals display a prominent IFN-I signature, which correlates with abnormal IL-36 activity. We then validated the association between IL-36 deregulation and IFN-I over-expression in patients with severe psoriasis vulgaris (PV). We also found that the activation of IFN-I genes was associated with extracutaneous morbidity, in both GPP and PV. Finally, we undertook mechanistic experiments, demonstrating that IL-36 acts directly on plasmacytoid dendritic cells, where it potentiates toll-like receptor (TLR)-9 activation and IFN-α production. This effect was mediated by the upregulation of PLSCR1, a phospholipid scramblase mediating endosomal TLR-9 translocation. These findings identify an IL-36/ IFN-I axis contributing to extracutaneous inflammation in psoriasis.


Asunto(s)
Células Dendríticas/inmunología , Regulación de la Expresión Génica , Interferones/metabolismo , Interleucina-1/genética , Psoriasis/inmunología , ARN/genética , Células Dendríticas/metabolismo , Humanos , Interleucina-1/biosíntesis , Neutrófilos/inmunología , Neutrófilos/metabolismo , Psoriasis/metabolismo , Psoriasis/patología , Transducción de Señal
16.
Mol Biol Evol ; 37(2): 320-326, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31642480

RESUMEN

Cancer progression is an evolutionary process. During this process, evolving cancer cell populations encounter restrictive ecological niches within the body, such as the primary tumor, circulatory system, and diverse metastatic sites. Efforts to prevent or delay cancer evolution-and progression-require a deep understanding of the underlying molecular evolutionary processes. Herein we discuss a suite of concepts and tools from evolutionary and ecological theory that can inform cancer biology in new and meaningful ways. We also highlight current challenges to applying these concepts, and propose ways in which incorporating these concepts could identify new therapeutic modes and vulnerabilities in cancer.


Asunto(s)
Genómica/métodos , Neoplasias/genética , Progresión de la Enfermedad , Evolución Molecular , Aptitud Genética , Humanos , Filogenia , Nicho de Células Madre
17.
Biochim Biophys Acta Gene Regul Mech ; 1863(6): 194445, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31654804

RESUMEN

Interactions between cancer cells and non-cancer cells composing the tumour microenvironment play a primary role in determining cancer progression and shaping the response to therapy. The qualitative and quantitative characterisation of the different cell populations in the tumour microenvironment is therefore crucial to understand its role in cancer. In recent years, many experimental and computational approaches have been developed to identify the cell populations composing heterogeneous tissue samples, such as cancer. In this review, we describe the state-of-the-art approaches for the quantification of non-cancer cells from bulk and single-cell cancer transcriptomic data, with a focus on immune cells. We illustrate the main features of these approaches and highlight their applications for the analysis of the tumour microenvironment in solid cancers. We also discuss techniques that are complementary and alternative to RNA sequencing, particularly focusing on approaches that can provide spatial information on the distribution of the cells within the tumour in addition to their qualitative and quantitative measurements. This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.


Asunto(s)
Neoplasias/genética , RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Microambiente Tumoral/genética , Biomarcadores/metabolismo , Humanos , Neoplasias/inmunología
18.
Nat Commun ; 10(1): 3101, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308377

RESUMEN

The identification of cancer-promoting genetic alterations is challenging particularly in highly unstable and heterogeneous cancers, such as esophageal adenocarcinoma (EAC). Here we describe a machine learning algorithm to identify cancer genes in individual patients considering all types of damaging alterations simultaneously. Analysing 261 EACs from the OCCAMS Consortium, we discover helper genes that, alongside well-known drivers, promote cancer. We confirm the robustness of our approach in 107 additional EACs. Unlike recurrent alterations of known drivers, these cancer helper genes are rare or patient-specific. However, they converge towards perturbations of well-known cancer processes. Recurrence of the same process perturbations, rather than individual genes, divides EACs into six clusters differing in their molecular and clinical features. Experimentally mimicking the alterations of predicted helper genes in cancer and pre-cancer cells validates their contribution to disease progression, while reverting their alterations reveals EAC acquired dependencies that can be exploited in therapy.


Asunto(s)
Adenocarcinoma/genética , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Neoplasias Esofágicas/genética , Perfilación de la Expresión Génica/métodos , Medicina de Precisión/métodos , Antineoplásicos/farmacología , Biomarcadores de Tumor/antagonistas & inhibidores , Biología Computacional/métodos , Conjuntos de Datos como Asunto , Progresión de la Enfermedad , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inestabilidad Genómica , Humanos , Aprendizaje Automático , Modelos Genéticos , Familia de Multigenes/efectos de los fármacos , Tasa de Mutación , Polimorfismo de Nucleótido Simple
19.
Nature ; 565(7739): 301-303, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30643303
20.
Cell Rep ; 26(3): 555-563.e6, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650350

RESUMEN

We provide a catalog for the effects of the human kinome on cell survival in response to DNA-damaging agents, covering all major DNA repair pathways. By treating 313 kinase-deficient cell lines with ten diverse DNA-damaging agents, including seven commonly used chemotherapeutics, we identified examples of vulnerability and resistance that are kinase specific. To investigate synthetic lethal interactions, we tested the response to carmustine for 25 cell lines by establishing a phenotypic fluorescence-activated cell sorting (FACS) assay designed to validate gene-drug interactions. We show apoptosis, cell cycle changes, and DNA damage and proliferation after alkylation- or crosslink-induced damage. In addition, we reconstitute the cellular sensitivity of DYRK4, EPHB6, MARK3, and PNCK as a proof of principle for our study. Furthermore, using global phosphoproteomics on cells lacking MARK3, we provide evidence for its role in the DNA damage response. Our data suggest that cancers with inactivating mutations in kinases, including MARK3, are particularly vulnerable to alkylating chemotherapeutic agents.


Asunto(s)
Daño del ADN/fisiología , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA