Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(4): e0414223, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38421191

RESUMEN

In an effort to identify novel compounds with potent inhibition against Toxoplasma gondii, a phenotypic screen was performed utilizing a library of 683 pure compounds derived primarily from terrestrial and marine fungi. An initial screen with a fixed concentration of 5 µM yielded 91 hits with inhibition comparable to an equal concentration of artemisinin. These compounds were then triaged based on known biological and chemical concerns and liabilities. From these, 49 prioritized compounds were tested in a dose response format with T. gondii and human foreskin fibroblasts (HFFs) for cytotoxicity. Ten compounds were identified with an IC50 less than 150 nM and a selectivity index (SI) greater than 100. An additional eight compounds demonstrated submicromolar IC50 and SI values equal to or greater than 35. While the majority of these scaffolds have been previously implicated against apicomplexan parasites, their activities in T. gondii were largely unknown. Herein, we report the T. gondii activity of these compounds with chemotypes including xanthoquinodins, peptaibols, heptelidic acid analogs, and fumagillin analogs, with multiple compounds demonstrating exceptional potency in T. gondii and limited toxicity to HFFs at the highest concentrations tested. IMPORTANCE: Current therapeutics for treating toxoplasmosis remain insufficient, demonstrating high cytotoxicity, poor bioavailability, limited efficacy, and drug resistance. Additional research is needed to develop novel compounds with high efficacy and low cytotoxicity. The success of artemisinin and other natural products in treating malaria highlights the potential of natural products as anti-protozoan therapeutics. However, the exploration of natural products in T. gondii drug discovery has been less comprehensive, leaving untapped potential. By leveraging the resources available for the malaria drug discovery campaign, we conducted a phenotypic screen utilizing a set of natural products previously screened against Plasmodium falciparum. Our study revealed 18 compounds with high potency and low cytotoxicity in T. gondii, including four novel scaffolds with no previously reported activity in T. gondii. These new scaffolds may serve as starting points for the development of toxoplasmosis therapeutics but could also serve as tool compounds for target identification studies using chemogenomic approach.


Asunto(s)
Antiprotozoarios , Artemisininas , Productos Biológicos , Malaria , Toxoplasma , Toxoplasmosis , Humanos , Antiprotozoarios/farmacología , Productos Biológicos/farmacología , Artemisininas/farmacología
2.
Mol Microbiol ; 121(5): 927-939, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38396382

RESUMEN

Aspergillus flavus is an agriculturally significant micro-fungus having potential to contaminate food and feed crops with toxic secondary metabolites such as aflatoxin (AF) and cyclopiazonic acid (CPA). Research has shown A. flavus strains can overcome heterokaryon incompatibility and undergo meiotic recombination as teleomorphs. Although evidence of recombination in the AF gene cluster has been reported, the impacts of recombination on genotype and metabolomic phenotype in a single generation are lacking. In previous studies, we paired an aflatoxigenic MAT1-1 A. flavus strain with a non-aflatoxigenic MAT1-2 A. flavus strain that had been tagged with green fluorescent protein and then 10 F1 progenies (a mix of fluorescent and non-fluorescent) were randomly selected from single-ascospore colonies and broadly examined for evidence of recombination. In this study, we determined four of those 10 F1 progenies were recombinants because they were not vegetatively compatible with either parent or their siblings, and they exhibited other distinctive traits that could only result from meiotic recombination. The other six progenies examined shared genomic identity with the non-aflatoxigenic, fluorescent, and MAT1-2 parent, but were metabolically distinct. This study highlights phenotypic and genomic changes that may occur in a single generation from the outcrossing of sexually compatible strains of A. flavus.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Aflatoxinas/metabolismo , Aflatoxinas/genética , Genoma Fúngico/genética , Recombinación Genética , Genómica , Metabolómica , Genotipo , Fenotipo , Familia de Multigenes , Variación Genética , Indoles/metabolismo , Meiosis/genética
3.
Nat Microbiol ; 9(2): 336-345, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38316926

RESUMEN

microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Humanos , Metabolómica/métodos , Bases de Datos Factuales
4.
Cell Chem Biol ; 31(2): 312-325.e9, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37995692

RESUMEN

Our previous study identified 52 antiplasmodial peptaibols isolated from fungi. To understand their antiplasmodial mechanism of action, we conducted phenotypic assays, assessed the in vitro evolution of resistance, and performed a transcriptome analysis of the most potent peptaibol, HZ NPDG-I. HZ NPDG-I and 2 additional peptaibols were compared for their killing action and stage dependency, each showing a loss of digestive vacuole (DV) content via ultrastructural analysis. HZ NPDG-I demonstrated a stepwise increase in DV pH, impaired DV membrane permeability, and the ability to form ion channels upon reconstitution in planar membranes. This compound showed no signs of cross resistance to targets of current clinical candidates, and 3 independent lines evolved to resist HZ NPDG-I acquired nonsynonymous changes in the P. falciparum multidrug resistance transporter, pfmdr1. Conditional knockdown of PfMDR1 showed varying effects to other peptaibol analogs, suggesting differing sensitivity.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Peptaiboles/metabolismo , Peptaiboles/farmacología , Antimaláricos/farmacología , Proteínas de Transporte de Membrana , Permeabilidad de la Membrana Celular
5.
Res Sq ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37577622

RESUMEN

MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.

6.
Mol Phys ; 121(9-10)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638114

RESUMEN

We propose a simple procedure for visualizing the electron density changes (EDC) during a chemical reaction, which is based on a mapping of rectangular grid points for a stationary structure into (distorted) positions around atoms of another stationary structure. Specifically, during a small step along the minimum energy pathway (MEP), the displacement of each grid point is obtained as a linear combination of the motion of all atoms, with the contribution from each atom scaled by the corresponding Hirshfeld weight. For several reactions (identity SN2, Claisen rearrangement, Diels-Alder reaction, [3+2] cycloaddition, and phenylethyl mercaptan attack on pericosine A), our EDC plots showed an expected reduction of electron densities around severed bonds (or those with the bond-order lowered), with the opposite observed for newly-formed or enhanced chemical bonds. The EDC plots were also shown for copper triflate catalyzed N2O fragmentation, where the N-O bond weakening initially occurred on a singlet surface, but continued on a triplet surface after reaching the minimum-energy crossing point (MECP) between the two potential energy surfaces.

7.
J Nat Prod ; 86(8): 1980-1993, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37523665

RESUMEN

Fungi pose a persistent threat to humankind with worrying indications that emerging and re-emerging pathogens (e.g., Candida auris, Coccidioides spp., drug-resistant Aspergilli, and more) exhibit resistance to the limited number of approved antifungals. To address this problem, our team is exploring endophytic fungi as a resource for the discovery of new antifungal natural products. The rationale behind this decision is based on evidence that endophytes engage with plants in mutualistic relationships wherein some fungi actively participate by producing chemical defense measures that suppress pathogenic microorganisms. To improve the odds of bioactive metabolite discovery, we developed a new hands-free laser-cutting system capable of generating >50 plant samples per minute that, in turn, enabled our team to prepare and screen large numbers of endophytic fungi. One of the fungal isolates obtained in this way was identified as an Elsinoë sp. that produced a unique aureobasidin analogue, persephacin (1). Some distinctive features of 1 are the absence of both phenylalanine residues combined with the incorporation of a novel amino acid residue, persephanine (9). Compound 1 exhibits potent antifungal effects against a large number of pathogenic yeast (including several clinical C. auris strains), as well as phylogenetically diverse filamentous fungi (e.g., Aspergillus fumigatus). In an ex vivo eye infection model, compound 1 outperformed standard-of-care treatments demonstrating the ability to suppress fluconazole-resistant Candida albicans and A. fumigatus at a concentration (0.1% solution) well below the clinically recommended levels used for fluconazole and natamycin (2% and 5% solutions, respectively). In 3D tissue models for acute dermal and ocular safety, 1 was found to be nontoxic and nonirritating at concentrations required to elicit antifungal activity. Natural product 1 appears to be a promising candidate for further investigation as a broad-spectrum antifungal capable of controlling a range of pathogens that negatively impact human, animal, and plant health.


Asunto(s)
Antifúngicos , Fluconazol , Animales , Humanos , Antifúngicos/farmacología , Fluconazol/farmacología , Aspergillus fumigatus , Pruebas de Sensibilidad Microbiana , Candida albicans
8.
J Nat Prod ; 86(6): 1596-1605, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37276438

RESUMEN

Xanthoquinodins make up a distinctive class of xanthone-anthraquinone heterodimers reported as secondary metabolites from several fungal species. Through a collaborative multi-institutional screening program, a fungal extract prepared from a Trichocladium sp. was identified that exhibited strong inhibitory effects against several human pathogens (Mycoplasma genitalium, Plasmodium falciparum, Cryptosporidium parvum, and Trichomonas vaginalis). This report focuses on one of the unique samples that exhibited a desirable combination of biological effects: namely, it inhibited all four test pathogens and demonstrated low levels of toxicity toward HepG2 (human liver) cells. Fractionation and purification of the bioactive components and their congeners led to the identification of six new compounds [xanthoquinodins NPDG A1-A5 (1-5) and B1 (6)] as well as several previously reported natural products (7-14). The chemical structures of 1-14 were determined based on interpretation of their 1D and 2D NMR, HRESIMS, and electronic circular dichroism (ECD) data. Biological testing of the purified metabolites revealed that they possessed widely varying levels of inhibitory activity against a panel of human pathogens. Xanthoquinodins A1 (7) and A2 (8) exhibited the most promising broad-spectrum inhibitory effects against M. genitalium (EC50 values: 0.13 and 0.12 µM, respectively), C. parvum (EC50 values: 5.2 and 3.5 µM, respectively), T. vaginalis (EC50 values: 3.9 and 6.8 µM, respectively), and P. falciparum (EC50 values: 0.29 and 0.50 µM, respectively) with no cytotoxicity detected at the highest concentration tested (HepG2 EC50 > 25 µM).


Asunto(s)
Antiinfecciosos , Criptosporidiosis , Cryptosporidium , Hongos Mitospóricos , Humanos , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Estructura Molecular
9.
J Org Chem ; 88(13): 9167-9186, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37343240

RESUMEN

Fusapyrones are fungal metabolites, which have been reported to have broad-spectrum antibacterial and antifungal properties. Despite the first members of this chemical class being described three decades prior, many aspects of their structures have remained unresolved, thereby constraining efforts to fully understand structure-activity relationships within this metabolite family and impeding the design of streamlined syntheses. Among the main challenges posed by fusapyrones is the incorporation of several single and groups of stereocenters separated by atoms with freely rotating bonds, which have proven unyielding to spectroscopic analyses. In this study, we obtained a series of new (2-5 and 7-9) and previously reported fusapyrones (1 and 6), which were subjected to a combination of spectroscopic, chemical, and computational techniques enabling us to offer proposals for their full structures, as well as provide a pathway to reinterpreting the absolute configurations of other published fusapyrone metabolites. Biological testing of the fusapyrones revealed their abilities to inhibit and disrupt biofilms made by the human fungal pathogen, Candida albicans. These results show that fusapyrones reduce hyphae formation in C. albicans, as well as decrease the surface adherence capabilities of planktonic cells and cells transitioning into early-stage biofilm formation.


Asunto(s)
Antifúngicos , Candida albicans , Humanos , Antifúngicos/farmacología , Antifúngicos/química , Pironas/farmacología , Biopelículas
10.
Microbiol Spectr ; 11(3): e0064723, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37039683

RESUMEN

There is an unmet need for effective therapies for treating diseases associated with the intestinal parasite Giardia lamblia. In this study, a library of chemically validated purified natural products and fungal extracts was screened for chemical scaffolds that can inhibit the growth of G. lamblia. The phenotypic screen led to the identification of several previously unreported classes of natural product inhibitors that block the growth of G. lamblia. Hits from phenotypic screens of these naturally derived compounds are likely to possess a variety of mechanisms of action not associated with clinically used nitroimidazole and thiazolide compounds. They may therefore be effective against current drug-resistant parasite strains. IMPORTANCE There is a direct link between widespread prevalence of clinical giardiasis and poverty. This may be one of the reasons why giardiasis is a significant contributor to diarrheal morbidity, stunting, and death of children in resource-limited communities around the world. FDA-approved treatments for giardiasis include metronidazole, related nitroimidazole drugs, and albendazole. However, a substantial number of clinical infections are resistant to these treatments. The depth of the challenge is partly exacerbated by a lack of investment in the discovery and development of novel agents for treatment of giardiasis. Applicable interventions must include new drug development strategies that will result in the identification of effective therapeutics, particularly those that are inexpensive and can be quickly advanced to clinical uses, such as products from nature. This study identified novel chemical scaffolds from fungi that can form the basis of future medicinal chemistry optimization of novel antigiardial agents.


Asunto(s)
Antiprotozoarios , Productos Biológicos , Giardiasis , Niño , Humanos , Giardiasis/parasitología , Antiprotozoarios/farmacología , Productos Biológicos/farmacología , Metronidazol/uso terapéutico , Hongos
11.
Antimicrob Agents Chemother ; 67(4): e0000623, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37070857

RESUMEN

Mycoplasma genitalium is a sexually transmitted reproductive tract pathogen of men and women. M. genitalium infections are increasingly difficult to treat due to poor efficacy of doxycycline and acquired resistance to azithromycin and moxifloxacin. A recent clinical trial suggested that metronidazole may improve cure rates for women with pelvic inflammatory disease and reduced the detection of M. genitalium when included with standard doxycycline plus ceftriaxone treatment. As data regarding susceptibility of mycoplasmas to nitroimidazoles are lacking in the scientific literature, we determined the in vitro susceptibility of 10 M. genitalium strains to metronidazole, secnidazole, and tinidazole. MICs ranged from 1.6 to 12.5 µg/mL for metronidazole, 3.1 to 12.5 µg/mL for secnidazole, and 0.8 to 6.3 µg/mL for tinidazole. None of these agents was synergistic with doxycycline in checkerboard broth microdilution assays. Tinidazole was superior to metronidazole and secnidazole in terms of MIC and time-kill kinetics and was bactericidal (>99.9% killing) at concentrations below reported serum concentrations. Mutations associated with nitroimidazole resistance were identified by whole-genome sequencing of spontaneous resistant mutants, suggesting a mechanism for reductive activation of the nitroimidazole prodrug by a predicted NAD(P)H-dependent flavin mononucleotide (FMN) oxidoreductase. The presence of oxygen did not affect MICs of wild-type M. genitalium, but a nitroimidazole-resistant mutant was defective for growth under anaerobic conditions, suggesting that resistant mutants may have a fitness disadvantage in anaerobic genital sites. Clinical studies are needed to determine if nitroimidazoles, especially tinidazole, are effective for eradicating M. genitalium infections in men and women.


Asunto(s)
Infecciones por Mycoplasma , Mycoplasma genitalium , Nitroimidazoles , Masculino , Femenino , Humanos , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Doxiciclina/farmacología , Doxiciclina/uso terapéutico , Metronidazol/farmacología , Metronidazol/uso terapéutico , Tinidazol/farmacología , Tinidazol/uso terapéutico , Mycoplasma genitalium/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Mycoplasma/tratamiento farmacológico , Farmacorresistencia Bacteriana/genética
12.
J Nat Prod ; 85(6): 1603-1616, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35696348

RESUMEN

Seven new peptaibols named tolypocladamides A-G have been isolated from an extract of the fungus Tolypocladium inflatum, which inhibits the interaction between Raf and oncogenic Ras in a cell-based high-throughput screening assay. Each peptaibol contains 11 amino acid residues, an octanoyl or decanoyl fatty acid chain at the N-terminus, and a leucinol moiety at the C-terminus. The peptaibol sequences were elucidated on the basis of 2D NMR and mass spectral fragmentation analyses. Amino acid configurations were determined by advanced Marfey's analyses. Tolypocladamides A-G caused significant inhibition of Ras/Raf interactions with IC50 values ranging from 0.5 to 5.0 µM in a nanobioluminescence resonance energy transfer (NanoBRET) assay; however, no interactions were observed in a surface plasmon resonance assay for binding of the compounds to wild type or G12D mutant Ras constructs or to the Ras binding domain of Raf. NCI 60 cell line testing was also conducted, and little panel selectivity was observed.


Asunto(s)
Antineoplásicos , Hypocreales , Aminoácidos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Hypocreales/química , Peptaiboles/farmacología
13.
Nutrients ; 14(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35565653

RESUMEN

Evidence of dried plum's benefits on bone continues to emerge. This study investigated the contribution of the fruit's polyphenol (PP) and carbohydrate (CHO) components on a bone model of postmenopausal osteoporosis to explore their prebiotic activity. Osteopenic ovariectomized mice were fed diets supplemented with dried plum, a crude extract of dried plum's polyphenolic compounds, or the PP or CHO fraction of the crude extract. The effects of treatments on the bone phenotype were assessed at 5 and 10 weeks as well as the prebiotic activity of the different components of dried plum. Both the CHO and PP fractions of the extract contributed to the effects on bone with the CHO suppressing bone formation and resorption, and the PP temporally down-regulating formation. The PP and CHO components also altered the gut microbiota and cecal short chain fatty acids. These findings demonstrate that the CHO as well as the PP components of dried plum have potential prebiotic activity, but they have differential roles in mediating the alterations in bone formation and resorption that protect bone in estrogen deficiency.


Asunto(s)
Polifenoles , Prunus domestica , Animales , Densidad Ósea , Mezclas Complejas/farmacología , Estrógenos/farmacología , Ratones , Ratones Endogámicos C57BL , Polifenoles/farmacología , Prebióticos
14.
J Nat Prod ; 85(4): 1079-1088, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35416663

RESUMEN

The pressing need for novel chemical matter to support bioactive compound discovery has led natural product researchers to explore a wide range of source organisms and environments. One of the implicit guiding principles behind those efforts is the notion that sampling different environments is critical to accessing unique natural products. This idea was tested by comparing fungi from disparate biomes: aquatic sediments from Lake Michigan (USA) and terrestrial samples taken from the surrounding soils. Matched sets of Penicillium brevicompactum, Penicillium expansum, and Penicillium oxalicum from the two source environments were compared, revealing modest differences in physiological performance and chemical output. Analysis of LC-MS/MS-derived molecular feature data showed no source-dependent differences in chemical richness. High levels of scaffold homogeneity were also observed with 78-83% of scaffolds shared among the terrestrial and aquatic Penicillium spp. isolates. A comparison of the culturable fungi from the two biomes indicated that certain genera were more strongly associated with aquatic sediments (e.g., Trichoderma, Pseudeurotium, Cladosporium, and Preussia) versus the surrounding terrestrial environment (e.g., Fusarium, Pseudogymnoascus, Humicola, and Acremonium). Taken together, these results suggest that focusing efforts on sampling the microbial resources that are unique to an environment may have a more pronounced effect on enhancing the sought-after natural product diversity needed for chemical discovery and screening collections.


Asunto(s)
Ascomicetos , Productos Biológicos , Penicillium , Biodiversidad , Productos Biológicos/química , Cromatografía Liquida , Hongos , Penicillium/química , Espectrometría de Masas en Tándem
15.
ACS Omega ; 7(9): 7675-7682, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35284725

RESUMEN

Safe and effective treatments for Chagas disease, a potentially fatal parasitic infection associated with cardiac and gastrointestinal pathology and caused by the kinetoplastid parasite Trypanosoma cruzi, have yet to be developed. Benznidazole and nifurtimox, which are currently the only available drugs against T. cruzi, are associated with severe adverse effects and questionable efficacy in the late stage of the disease. Natural products have proven to be a rich source of new chemotypes for other infectious agents. We utilized a microscopy-based high-throughput phenotypic screen to identify inhibitors of T. cruzi from a library of natural product samples obtained from fungi procured through a Citizen Science Soil Collection Program (https://whatsinyourbackyard.org/) and the Great Lakes (USA) benthic environment. We identified five leucinostatins (A, B, F, NPDG C, and NPDG D) as potent inhibitors of the intracellular amastigote form of T. cruzi. Leucinostatin B also showed in vivo suppression of T. cruzi in a mouse model of Chagas disease. Given prior reports that leucinostatins A and B have antiparasitic activity against the related kinetoplastid Trypanosoma brucei, our findings suggest a potential cross-trypanocidal compound class and provide a platform for the further chemical derivatization of a potent chemical scaffold against T. cruzi.

16.
Cancers (Basel) ; 13(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34944795

RESUMEN

A screening program designed to identify natural products with selective cytotoxic effects against cell lines representing different types of pediatric solid tumors led to the identification of altertoxin II as a highly potent and selective cytotoxin against Ewing sarcoma cell lines. Altertoxin II, but not the related compounds altertoxin I and alteichin, was highly effective against every Ewing sarcoma cell line tested, with an average 25-fold selectivity for these cells as compared to cells representing other pediatric and adult cancers. Mechanism of action studies revealed that altertoxin II causes DNA double-strand breaks, a rapid DNA damage response, and cell cycle accumulation in the S phase. Our studies also demonstrate that the potent effects of altertoxin II are partially dependent on the progression through the cell cycle, because the G1 arrest initiated by a CDK4/6 inhibitor decreased antiproliferative potency more than 10 times. Importantly, the cell-type-selective DNA-damaging effects of altertoxin II in Ewing sarcoma cells occur independently of its ability to bind directly to DNA. Ultimately, we found that altertoxin II has a dose-dependent in vivo antitumor efficacy against a Ewing sarcoma xenograft, suggesting that it has potential as a therapeutic drug lead and will be useful to identify novel targets for Ewing-sarcoma-specific therapies.

18.
mSystems ; 6(5): e0064421, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34698546

RESUMEN

The success of natural product-based drug discovery is predicated on having chemical collections that offer broad coverage of metabolite diversity. We propose a simple set of tools combining genetic barcoding and metabolomics to help investigators build natural product libraries aimed at achieving predetermined levels of chemical coverage. It was found that such tools aided in identifying overlooked pockets of chemical diversity within taxa, which could be useful for refocusing collection strategies. We have used fungal isolates identified as Alternaria from a citizen-science-based soil collection to demonstrate the application of these tools for assessing and carrying out predictive measurements of chemical diversity in a natural product collection. Within Alternaria, different subclades were found to contain nonequivalent levels of chemical diversity. It was also determined that a surprisingly modest number of isolates (195 isolates) was sufficient to afford nearly 99% of Alternaria chemical features in the data set. However, this result must be considered in the context that 17.9% of chemical features appeared in single isolates, suggesting that fungi like Alternaria might be engaged in an ongoing process of actively exploring nature's metabolic landscape. Our results demonstrate that combining modest investments in securing internal transcribed spacer (ITS)-based sequence information (i.e., establishing gene-based clades) with data from liquid chromatography-mass spectrometry (i.e., generating feature accumulation curves) offers a useful route to obtaining actionable insights into chemical diversity coverage trends in a natural product library. It is anticipated that these outcomes could be used to improve opportunities for accessing bioactive molecules that serve as the cornerstone of natural product-based drug discovery. IMPORTANCE Natural product drug discovery efforts rely on libraries of organisms to provide access to diverse pools of compounds. Actionable strategies to rationally maximize chemical diversity, rather than relying on serendipity, can add value to such efforts. Readily implementable biological (i.e., ITS sequence analysis) and chemical (i.e., mass spectrometry-based feature and scaffold measurements) diversity assessment tools can be employed to monitor and adjust library development tactics in real time. In summary, metabolomics-driven technologies and simple gene-based specimen barcoding approaches have broad applicability to building chemically diverse natural product libraries.

19.
ACS Infect Dis ; 7(10): 2889-2903, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34491031

RESUMEN

Cyclic tetrapeptide histone deacetylase inhibitors represent a promising class of antiplasmodial agents that epigenetically disrupt a wide range of cellular processes in Plasmodium falciparum. Unfortunately, certain limitations, including reversible killing effects and host cell toxicity, prevented these inhibitors from further development and clinical use as antimalarials. In this study, we present a series of cyclic tetrapeptide analogues derived primarily from the fungus Wardomyces dimerus that inhibit P. falciparum with low nanomolar potency and high selectivity. This cyclic tetrapeptide scaffold was diversified further via semisynthesis, leading to the identification of several key structural changes that positively impacted the selectivity, potency, and in vitro killing profiles of these compounds. We confirmed their effectiveness as HDAC inhibitors through the inhibition of PfHDAC1 catalytic activity, in silico modeling, and the hyperacetylation of histone H4. Additional analysis revealed the in vitro inhibition of the most active epoxide-containing analogue was plasmodistatic, exhibiting reversible inhibitory effects upon compound withdrawal after 24 or 48 h. In contrast, one of the new diacetyloxy semisynthetic analogues, CTP-NPDG 19, displayed a rapid and irreversible action against the parasite following compound exposure for 24 h.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Antimaláricos/farmacología , Ascomicetos , Inhibidores de Histona Desacetilasas/farmacología
20.
Sci Rep ; 11(1): 13597, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193920

RESUMEN

Merkel cell carcinoma (MCC) is a rare, but aggressive skin cancer the incidence of which has increased significantly in recent years. The majority of MCCs have incorporated Merkel cell polyomavirus (VP-MCC) while the remainder are virus-negative (VN-MCC). Although a variety of therapeutic options have shown promise in treating MCC, there remains a need for additional therapeutics as well as probes for better understanding MCC. A high-throughput screening campaign was used to assess the ability of > 25,000 synthetic and natural product compounds as well as > 20,000 natural product extracts to affect growth and survival of VN-MCC and VP-MCC cell lines. Sixteen active compounds were identified that have mechanisms of action reported in the literature along with a number of compounds with unknown mechanisms. Screening results with pure compounds suggest a range of potential targets for MCC including DNA damage, inhibition of DNA or protein synthesis, reactive oxygen species, and proteasome inhibition as well as NFκB inhibition while also suggesting the importance of zinc and/or copper binding. Many of the active compounds, particularly some of the natural products, have multiple reported targets suggesting that this strategy might be a particularly fruitful approach. Processing of several active natural product extracts resulted in the identification of additional MCC-active compounds. Based on these results, further investigations focused on natural products sources, particularly of fungal origin, are expected to yield further potentially useful modulators of MCC.


Asunto(s)
Antineoplásicos , Productos Biológicos , Carcinoma de Células de Merkel , Neoplasias Cutáneas , Antineoplásicos/química , Antineoplásicos/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Carcinoma de Células de Merkel/tratamiento farmacológico , Carcinoma de Células de Merkel/metabolismo , Carcinoma de Células de Merkel/patología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA