Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13281, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858492

RESUMEN

Zearalenone (ZEN), an estrogenic mycotoxin, is one of the most common food and feed contaminants. Also, its metabolites α-zearalenol (α-ZEL) and ß-zearalenol (ß-ZEL) are considered to induce oxidative stress, however its effect in prostate cells is not known yet. Our previous observations showed that forehead box transcription factor 3a (FOXO3a) expression is modified in hormone- sensitive cells in the response to mycotoxins, similar to the phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) pathway. Thus, this study evaluated the direct molecular effect of α-ZEL and ß-ZEL in a dose of 30 µM in hormone-dependent human prostate cancer (PCa) cells with the focus of the involvement of FOXO3a and PI3K/Akt signaling pathway in that effect. We observed that both active metabolites of ZEN reduced cell viability, induced oxidative stress, cell cycle arrest and apoptosis in PCa cells. Furthermore, we observed that FOXO3a as well as PI3K/Akt signaling pathway participate in ZELs induced toxicity in PCa cells, indicating that this signaling pathway might be a regulator of mycotoxin-induced toxicity generally.


Asunto(s)
Apoptosis , Proteína Forkhead Box O3 , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Especies Reactivas de Oxígeno , Transducción de Señal , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Apoptosis/efectos de los fármacos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Zeranol/análogos & derivados , Zeranol/metabolismo , Zeranol/farmacología , Línea Celular Tumoral , Zearalenona/farmacología , Zearalenona/toxicidad , Zearalenona/análogos & derivados , Supervivencia Celular/efectos de los fármacos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
2.
Reprod Biol ; 24(2): 100864, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38640630

RESUMEN

Deregulation of the relaxin family peptide system (RFPS) appears to increase the risk of range of cancers, including epithelial ovarian cancers (EOC). The present study examines the effect of relaxin family peptide receptor 1 (RXFP1) level on the biological properties of human epithelial ovarian adenocarcinoma cells (OVCAR4 and SKOV3). RXFP1 was downregulated (RXFP1↓) in the cells using the RXFP1 sgRNA CRISPR All-in-One Lentivirus set (pLenti-U6-sgRNA-SFFV-Cas9-2A-Puro), and upregulated (RXFP1↑) using the RXFP1 CRISPRa sgRNA Lentivector (pLenti-U6-sgRNA-PGK-Neo) kit, which activates the RXFP1 gene when paired with dCas9-SAM. The changes taking place during adhesion to extracellular matrix (ECM) proteins were assessed in multi-well plates coated with collagen, fibronectin, laminin and gelatin. Cellular viability was monitored based on mitochondrial metabolic activity (MTT Assay, Alamar Blue Assay) and adenosine triphosphate production (ATP Assay). The rate of cell proliferation was determined based on the percentage of Ki67 immunoreactive cells and the numbers of cells in particular cell-cycle phases. The mesenchymal-like (Boyden Chamber Assay) and amoeboid-like movements (Wound Healing Assay) of ovarian cancer cells were also analyzed after transfection. RXFP1 downregulation decreased the adhesion properties of ovarian cancer cells and increased the tendency for apoptosis under stressful conditions. In contrast, RXFP1 upregulation had pro-proliferative, pro-survival and promigratory effects. Our findings confirm that the relaxin-2/RXFP1 signaling pathway plays a role in the promotion of growth and progression of ovarian cancer.


Asunto(s)
Proliferación Celular , Neoplasias Ováricas , Receptores Acoplados a Proteínas G , Humanos , Femenino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Neoplasias Ováricas/metabolismo , Línea Celular Tumoral , Receptores de Péptidos/metabolismo , Receptores de Péptidos/genética , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Relaxina/metabolismo , Adhesión Celular
4.
Cancers (Basel) ; 15(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067350

RESUMEN

Despite the tremendous development of oncology, prostate cancer remains a debilitating malignancy. One of the most promising approaches to addressing this issue is to exploit the advancements of nanomedicine in combination with well-established nuclear medicine and radiotherapy. Following this idea, we have developed a radioisotope nanocarrier platform of electron-beam-synthesized nanogels based on poly(acrylic acid). We have developed a functionalization protocol, showing the very high (>97%) efficiency of the conjugation in targeting a ligand-bombesin derivative. This engineered peptide can bind gastrin-releasing peptide receptors overexpressed in prostate cancer cells; moreover, it bears a radioisotope-chelating moiety. Our nanoplatform exhibits very promising performance in vitro; the radiolabeled nanocarriers maintained high radiochemical purity of >90% in both the labeling buffer and human serum for up to 14 days. The application of the targeted nanocarrier allowed also effective and specific uptake in PC-3 prostate cancer cells, up to almost 30% after 4 h, which is a statistically significant improvement in comparison to carrier-free radiolabeled peptides. Although our system requires further studies for more promising results in vivo, our study represents a vital advancement in radionanomedicine-one of many steps that will lead to effective therapy for castration-resistant prostate cancer.

6.
J Inflamm Res ; 16: 5039-5060, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37933334

RESUMEN

Purpose: Allergic diseases have reached epidemic proportions globally, affecting nearly 30% of the world's population. One of the most prominent sources of allergens is fungi, causing up to 6% of respiratory diseases in the general population. However, the cause of respiratory allergies is not always identifiable. Therefore, we studied the ability of two representatives of common powdery mildew (Erysiphales), Erysiphe palczewskii and Erysiphe convolvuli, to induce a proinflammatory response in in vitro models of the upper and lower respiratory tract. Materials and Methods: Two cell lines, BEAS-2B and A549, were used to mimic upper and lower respiratory epithelial cells. The toxicity of fungal extracts was assessed with MTT and flow cytometry assay. The production of reactive oxygen species in the cells was measured with flow cytometry. ELISA tests were used to determine the production of proinflammatory cytokines. The presence of the cell integrity marker was assessed with the immunofluorescence method. Results: In both cell lines, the extract of E. palczewskii and E. convolvuli microfungi induced marked production of proinflammatory IL-1ß, TNF-α, and GM-CSF cytokines involved in developing allergic reactions. The higher levels of these cytokines with higher reactive oxygen species synthesis positively correlated with the disruption of epithelial cell junctions. Conclusion: We conclude that E. palczewskii and E. convolvuli microfungi have strong proinflammatory and proallergenic potential, but this finding needs in vivo confirmation.

7.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834049

RESUMEN

Legionella pneumophila is the primary causative agent of Legionnaires' disease. The mutant-type strain interrupted in the ORF7 gene region responsible for the lipopolysaccharide biosynthesis of the L. pneumophila strain Heysham-1, lacking the O-acetyl groups attached to the rhamnose of the core part, showed a higher surface polarity compared with the wild-type strain. The measurement of excitation energy transfer between fluorophores located on the surface of bacteria and eukaryotic cells showed that, at an early stage of interaction with host cells, the mutant exhibited weaker interactions with Acanthamoeba castellanii cells and THP-1-derived macrophages. The mutant displayed reduced adherence to macrophages but enhanced adherence to A. castellanii, suggesting that the O-acetyl group of the LPS core region plays a crucial role in facilitating interaction with macrophages. The lack of core rhamnose O-acetyl groups made it easier for the bacteria to multiply in amoebae and macrophages. The mutant induced TNF-α production more strongly compared with the wild-type strain. The mutant synthesized twice as many ceramides Cer(t34:0) and Cer(t38:0) than the wild-type strain. The study showed that the internal sugars of the LPS core region of L. pneumophila sg 1 can interact with eukaryotic cell surface receptors and mediate in contacting and attaching bacteria to host cells as well as modulating the immune response to infection.


Asunto(s)
Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Legionella pneumophila/genética , Lipopolisacáridos/metabolismo , Ramnosa/metabolismo , Serogrupo , Proteínas Bacterianas/metabolismo
8.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834120

RESUMEN

Ovarian cancer is one of the most common cancers in women and the most concerning issues in gynecological oncology in recent years. It is postulated that many factors may contribute to the development of ovarian cancer, including hormonal imbalance. Estrogens are a group of hormones that have an important role both in physiological and pathological processes. In ovarian cancer, they may regulate proliferation, invasiveness and epithelial to mesenchymal transition. Estrogen signaling also takes part in the regulation of the biology of the tumor microenvironment. This review summarizes the information connected with estrogen receptors, estrogens and their association with a tumor microenvironment. Moreover, this review also includes information about the changes in estrogen receptor expression upon exposition to various environmental chemicals.


Asunto(s)
Neoplasias Ováricas , Receptores de Estrógenos , Femenino , Humanos , Estrógenos/metabolismo , Transición Epitelial-Mesenquimal , Microambiente Tumoral , Neoplasias Ováricas/metabolismo
9.
Toxicol Lett ; 386: 9-19, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37683805

RESUMEN

Mycotoxins are secondary metabolites of fungi that may affect both human and animal health. Some of them possess estrogenic activity, due to direct binding to estrogen receptors (ERs) and hence disturb the hormonal balance of the organism. Alternariol (AOH) was previously reported as genotoxic, estrogenic and immunomodulatory agent. However, detailed mechanism of its action has not been fully elucidated. Estrogen receptor α (ERα) was previously reported to modulate the proliferation and invasiveness of ovarian cancer cells. Thus, we decided to verify whether estrogenic-like mycotoxin may affect ovarian cancer cells via ERα. The results showed that AOH induces apoptosis and oxidative stress and that these effects are partially modulated by ERα. Moreover, AOH decreases the invasion and migration of ovarian cancer cells and promotes changes in the expression of genes and proteins that are associated with the invasiveness of cancer i.e. MMP9, SNAIL1/2, ZEB1/2, VIM, CDH1 and CDH2. In conclusion, we postulate that AOH might significantly affect the viability and invasiveness of ovarian cancer cells via modulation of ERα and therefore possibly act as an endocrine disruptive agent in ovarian cancer cells.

11.
Curr Issues Mol Biol ; 45(8): 6325-6338, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37623218

RESUMEN

Cancer cells are characterised by uncontrolled cell proliferation; however, some of them can temporarily arrest their cell cycle at the G0 or G1 phase, which could contribute to tumour heterogeneity and drug resistance. The cell cycle status plays a critical role in chemosensitivity; however, the influence of G0- and G1-arrest has not been elucidated. To study the cell cycle arrest-mediated resistance, we used MCF-7 cells and generated three populations of cells: (1) cells arrested in the G0-like phase, (2) cells that resumed the cell cycle after the G0-like phase and (3) cells arrested in early G1 with a history of G0-like arrest. We observed that both the G0-like- and the G1-arrested cells acquired resistance to apoptosis induced by oxidative stress, accompanied by a decreased intracellular reactive oxygen species and DNA damage. This effect was associated with increased autophagy, likely facilitating their survival at DNA damage insult. The cell cycle reinitiation restored a sensitivity to oxidative stress typical for cells with a non-modulated cell cycle, with a concomitant decrease in autophagy. Our results support the need for further research on the resistance of G0- and G1-arrested cancer cells to DNA-damaging agents and present autophagy as a candidate for targeting in anticancer treatment.

12.
Int J Mol Sci ; 24(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298472

RESUMEN

The mycotoxin alternariol (AOH) can be found in food products infected by Alternaria spp. and is considered an endocrine-disruptive mycotoxin. The main mechanism of AOH toxicity is associated with DNA damage and modulation of the inflammation process. Still, AOH is considered as one of the emerging mycotoxins. In this study, we have evaluated how AOH might affect the local steroidogenesis process in the prostate, in both normal and cancer cells. We have found that AOH itself modulates the cell cycle, inflammation, and apoptosis, rather than the steroidogenesis process in prostate cancer cells; however, in the presence of another steroidogenic agent, the influence on steroidogenesis is significant. Therefore, this is the first study to report the effect of AOH on local steroidogenesis in normal and prostate cancer cells. We postulate that AOH might modulate the release of the steroid hormones and expression of the key components by interfering with the steroidogenic pathway and might be considered a steroidogenesis-altering agent.


Asunto(s)
Micotoxinas , Neoplasias de la Próstata , Humanos , Masculino , Próstata , Lactonas/metabolismo , Micotoxinas/metabolismo , Inflamación , Alternaria/metabolismo
13.
J Fungi (Basel) ; 9(5)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37233255

RESUMEN

The incidence of allergic diseases worldwide is rapidly increasing, making allergies a modern pandemic. This article intends to review published reports addressing the role of fungi as causative agents in the development of various overreactivity-related diseases, mainly affecting the respiratory tract. After presenting the basic information on the mechanisms of allergic reactions, we describe the impact of fungal allergens on the development of the allergic diseases. Human activity and climate change have an impact on the spread of fungi and their plant hosts. Particular attention should be paid to microfungi, i.e., plant parasites that may be an underestimated source of new allergens.

14.
Pol Arch Intern Med ; 133(9)2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36876868

RESUMEN

INTRODUCTION: Development of vaccines was a turning point of the COVID­19 pandemic. In this study, we describe the course of the vaccination program in Poland and the effectiveness of the BNT162b2 vaccine. OBJECTIVES: The aim of the study was to analyze the vaccination rates and effectiveness stratified by age groups in Poland. PATIENTS AND METHODS: This is a retrospective study based on the data on the vaccination rate and survival status among Polish citizens, obtained from the registries kept by the Polish Ministry of Health, the Statistics Poland, and the European Centre for Disease Prevention and Control. The data were collected between week 53 of 2020 and week 3 of 2022. The final analysis included patients who were either not vaccinated at all or fully vaccinated with the BNT162b2 vaccine. RESULTS: The database contained records of 36 362 777 individuals, of whom 14 441 506 (39.71%) were fully vaccinated with the BNT162b2 vaccine and 14 220 548 (39.11%) were not vaccinated at all. The weekly average effectiveness of the BNT162b2 vaccine in preventing death was 92.62% and varied from 89.08% for the citizens aged 80 years and older, to 100% for individuals aged 5 to 17 years. The estimated mortality rate was significantly higher in the unvaccinated group than in the fully vaccinated group in the entire cohort (447.9 per 100 000 vs 43.76 per 100 000; P <0.001) in all age categories. CONCLUSIONS: The study results confirm high effectiveness of the BNT162b2 vaccine in preventing COVID­19 deaths in all analyzed age groups.


Asunto(s)
COVID-19 , Vacunas , Humanos , Vacuna BNT162 , Polonia/epidemiología , Pandemias , Estudios Retrospectivos , COVID-19/epidemiología , COVID-19/prevención & control
15.
Molecules ; 28(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36770777

RESUMEN

SGLT2 (Sodium-glucose Cotransporter-2) inhibitors are newer glucose-lowering drugs with many cardiovascular benefits that are not fully understood yet. Endothelial integrity plays a key role in cardiovascular homeostasis. 25-hydroxycholesterol (25-OHC), which is a proatherogenic stimuli that impairs endothelial barrier functions. VE-cadherin is an endothelial-specific protein crucial in maintaining endothelial integrity. The aim of this study was to assess the influence of SGLT2i on the integrity of endothelial cells interrupted by 25-OHC. We also aimed to evaluate whether this effect is associated with changes in the levels of VE-cadherin. We pre-incubated HUVECs with 10 µg/mL of 25-hydroxycholesterol (25-OHC) for 4 h and then removed it and incubated endothelial cells with 1 µM of empagliflozin, 1 µM canagliflozin, or 1 µM dapagliflozin for 24 h. The control group included HUVECs cultured with the medium or with 25-OHC 10 µg/mL. The integrity of endothelial cells was measured by the RTCA-DP xCELLigence system, and VE-cadherin was assessed in confocal microscopy. Our results show that SGLT2 inhibitors significantly increase endothelial integrity in comparison to medium controls, and they improve endothelial cell integrity interrupted by 25-OHC. This effect is associated with significant improvements in VE-cadherin levels. SGLT2i: empagliflozin, canagliflozin, and dapagliflozin have a beneficial effect on the endothelial cell integrity and VE-cadherin levels reduced by 25-OHC.


Asunto(s)
Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Compuestos de Bencidrilo/farmacología , Canagliflozina/farmacología , Células Endoteliales , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Células Endoteliales de la Vena Umbilical Humana
16.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834867

RESUMEN

Advances in nanomedicine bring the attention of researchers to the molecular targets that can play a major role in the development of novel therapeutic and diagnostic modalities for cancer management. The choice of a proper molecular target can decide the efficacy of the treatment and endorse the personalized medicine approach. Gastrin-releasing peptide receptor (GRPR) is a G-protein-coupled membrane receptor, well known to be overexpressed in numerous malignancies including pancreatic, prostate, breast, lung, colon, cervical, and gastrointestinal cancers. Therefore, many research groups express a deep interest in targeting GRPR with their nanoformulations. A broad spectrum of the GRPR ligands has been described in the literature, which allows tuning of the properties of the final formulation, particularly in the field of the ligand affinity to the receptor and internalization possibilities. Hereby, the recent advances in the field of applications of various nanoplatforms that are able to reach the GRPR-expressing cells are reviewed.


Asunto(s)
Neoplasias , Receptores de Bombesina , Humanos , Bombesina , Nanomedicina , Neoplasias/tratamiento farmacológico , Nanomedicina Teranóstica
17.
J Med Virol ; 95(2): e28572, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36762592

RESUMEN

Messenger RNA (mRNA) vaccines against COVID-19 are the first authorized biological preparations developed using this platform. During the pandemic, their administration has been proven to be a life-saving intervention. Here, we review the main advantages of using mRNA vaccines, identify further technological challenges to be met during the development of the mRNA platform, and provide an update on the clinical progress on leading mRNA vaccine candidates against different viruses that include influenza viruses, human immunodeficiency virus 1, respiratory syncytial virus, Nipah virus, Zika virus, human cytomegalovirus, and Epstein-Barr virus. The prospects and challenges of manufacturing mRNA vaccines in low-income countries are also discussed. The ongoing interest and research in mRNA technology are likely to overcome some existing challenges for this technology (e.g., related to storage conditions and immunogenicity of some components of lipid nanoparticles) and enhance the portfolio of vaccines against diseases for which classical formulations are already authorized. It may also open novel pathways of protection against infections and their consequences for which no safe and efficient immunization methods are currently available.


Asunto(s)
COVID-19 , Infecciones por Virus de Epstein-Barr , Vacunas contra la Influenza , Virus Sincitial Respiratorio Humano , Vacunas Virales , Virosis , Infección por el Virus Zika , Virus Zika , Humanos , Vacunas contra la COVID-19 , Herpesvirus Humano 4/genética , Virus Sincitial Respiratorio Humano/genética , ARN Mensajero , Virus Zika/genética
18.
Toxicol Appl Pharmacol ; 461: 116390, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36690084

RESUMEN

Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is reported as a promising anti-cancer therapeutic target. Unfortunately, prostate cancer cells (PCa) are partially resistant to TRAIL-induced apoptosis limiting its therapeutic potential. The existing body of knowledge suggests that naturally produced compounds, such as mycotoxin deoxynivalenol (DON), might potentially sensitize cells to TRAIL treatment and improve the efficiency of therapy. Previously, we observed that DON induces oxidative stress and apoptosis in PCa cell lines. Thus we addressed here whether DON can sensitize PCa cells to TRAIL-induced apoptosis. Our data demonstrates that three out of four tested PCa cell lines pretreated with DON increased TRAIL-induced apoptosis detected with flow cytometry. This effect was associated with oxidative stress (LNCaP and DU-145 cell line) and elevated DNA damage (DU-145, LNCaP, and 22Rv1 cell lines). Next, in the animal model we inoculated PC tumor to SCKID mice followed by administration of DON intraperitoneally and/or TRIAL intravenously. During 21 days monitoring of tumor growth, the animals received 7 doses of DON, TRAIL, DON+TRAIL or control injections. No significant reduction in tumor mass was observed after combinational treatment of TRAIL and DON compared to 1 µg/kg of body weight DON treatment alone, which itself decreased the tumor growth. However, despite the lack of the TRAIL + DON effect, DON itself inducing apoptosis is an interesting compound worth investigating in the context of other combination therapies.


Asunto(s)
Micotoxinas , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , Micotoxinas/toxicidad , Ligandos , Apoptosis , Neoplasias de la Próstata/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Línea Celular Tumoral , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
19.
Sci Transl Med ; 14(652): eabj4310, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35857628

RESUMEN

Inflammatory processes induced by brain injury are important for recovery; however, when uncontrolled, inflammation can be deleterious, likely explaining why most anti-inflammatory treatments have failed to improve neurological outcomes after brain injury in clinical trials. In the thalamus, chronic activation of glial cells, a proxy of inflammation, has been suggested as an indicator of increased seizure risk and cognitive deficits that develop after cortical injury. Furthermore, lesions in the thalamus, more than other brain regions, have been reported in patients with viral infections associated with neurological deficits, such as SARS-CoV-2. However, the extent to which thalamic inflammation is a driver or by-product of neurological deficits remains unknown. Here, we found that thalamic inflammation in mice was sufficient to phenocopy the cellular and circuit hyperexcitability, enhanced seizure risk, and disruptions in cortical rhythms that develop after cortical injury. In our model, down-regulation of the GABA transporter GAT-3 in thalamic astrocytes mediated this neurological dysfunction. In addition, GAT-3 was decreased in regions of thalamic reactive astrocytes in mouse models of cortical injury. Enhancing GAT-3 in thalamic astrocytes prevented seizure risk, restored cortical states, and was protective against severe chemoconvulsant-induced seizures and mortality in a mouse model of traumatic brain injury, emphasizing the potential of therapeutically targeting this pathway. Together, our results identified a potential therapeutic target for reducing negative outcomes after brain injury.


Asunto(s)
Lesiones Encefálicas , COVID-19 , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Inflamación/patología , Ratones , Polímeros , Roedores/metabolismo , SARS-CoV-2 , Convulsiones , Tálamo/metabolismo , Tálamo/patología
20.
Vaccines (Basel) ; 10(7)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35891234

RESUMEN

By June 2022, COVID-19 vaccine coverage in low-income countries remained low, while the emergence of the highly-transmissible but less clinically-severe Omicron lineage of SARS-CoV-2 has led to the assumption expressed outside the academic realm that Omicron may offer a natural solution to the pandemic. The present paper argues that this assumption is based on the false premise that this variant could be the final evolutionary step of SARS-CoV-2. There remains a risk of the emergence of novel viral subvariants and recombinants, and entirely novel lineages, the clinical consequences of which are hard to predict. This is particularly important for regions with a high share of immunocompromised individuals, such as those living with HIV/AIDS, in whom SARS-CoV-2 can persist for months and undergo selection pressure. The vaccination of the least-vaccinated regions should remain the integral strategy to control viral evolution and its potential global consequences in developed countries, some of which have decided to ease sanitary and testing measures in response to the rise and dominance of the Omicron variant. We argue that low-income countries require help in improving COVID-19 vaccine availability, decreasing vaccine hesitancy, and increasing the understanding of long-term vaccination goals during the circulation of a viral variant that causes milder disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...