Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(21): 15519-15529, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752716

RESUMEN

Individual fingerprints of different isomers of C3H3+ cations have been identified by studying photoionization, photoexcitation, and photofragmentation of C3H3+ near the carbon K-edge. The experiment was performed employing the photon-ion merged-beams technique at the photon-ion spectrometer at PETRA III (PIPE). This technique is a variant of near-edge X-ray absorption fine-structure spectroscopy, which is particularly sensitive to the 1s → π* excitation. The C3H3+ primary ions were generated by an electron cyclotron resonance ion source. C3Hn2+ product ions with n = 0, 1, 2, and 3 were observed for photon energies in the range of 279.0 eV to 295.2 eV. The experimental spectra are interpreted with the aid of theoretical calculations within the framework of time-dependent density functional theory. To this end, absorption spectra have been calculated for three different constitutional isomers of C3H3+. We find that our experimental approach offers a new possibility to study at the same time details of the electronic structure and of the geometry of molecular ions such as C3H3+.

2.
Chemistry ; 30(14): e202303805, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38064536

RESUMEN

Radioimmunotherapy (RIT) is a promising alternative to conventional treatment options. Here, we present experimental work on the synthesis, radiochemistry, and in vivo performance of a lanthanoid-selective nonadentate bispidine ligand suitable for 177 Lu3+ ion complexation. The ligand (bisp,1) was derivatised with a photoactivatable aryl azide (ArN3 ) group as a bioconjugation handle for light-induced labelling of proteins. Quantitative radiosynthesis of [177 Lu]Lu-1+ was accomplished in 10 minutes at 40 °C. Subsequent incubation of [177 Lu]Lu-1+ with trastuzumab, followed by irradiation with light at 365 nm for 15 min, at room temperature and pH 8.0-8.3, gave the radiolabelled mAb, [177 Lu]Lu-1-azepin-trastuzumab ([177 Lu]Lu-1-mAb) in a decay-corrected radiochemical yield of 14 %, and radiochemical purity (RCP)>90 %. Stability studies and cellular binding assays in vitro using the SK-OV-3 human ovarian cancer cells confirmed that [177 Lu]Lu-1-mAb remained biological active and displayed specific binding to HER2/neu. Experiments in immunocompromised female athymic nude mice bearing subcutaneous xenograft models of SK-OV-3 tumours revealed significantly higher tumour uptake in the normal group compared with the control block group (29.8±11.4 %ID g-1 vs. 14.8±6.1 %ID g-1 , respectively; P-value=0.037). The data indicate that bispidine-based ligand systems are suitable starting points for constructing novel, high-denticity chelators for specific complexation of larger radiotheranostic metal ion nuclides.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Neoplasias , Radioisótopos , Receptor ErbB-2 , Animales , Ratones , Humanos , Femenino , Trastuzumab , Ratones Desnudos , Ligandos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Lutecio
3.
Inorg Chem ; 62(50): 20754-20768, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37707798

RESUMEN

Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine L2 (with a tridentate bipyridine acetate appended to N3 and a picolinate at N7) has been shown before to be an ideal chelator for 111In3+, 177Lu3+, and 225Ac3+, nuclides of interest for diagnosis and therapy, and a proof-of-principle study with an SSTR2-specific octreotate has shown potential for theranostic applications. We now have extended these studies in two directions. First, we present ligand derivative L3, in which the bipyridine acetate is substituted with terpyridine, a softer donor for metal ions with a preference for more covalency. L3 did not fulfill the hopes because complexation is much less efficient. While for Bi3+ and Pb2+ the ligand is an excellent chelator with properties similar to those of L2, Lu3+ and La3+ show very slow and inefficient complexation with L3 in contrast to L2, and 225Ac3+ is not fully coordinated, even at an increased temperature (92% radiochemical yield at 80 °C, 60 min, [L3] = 10-4 M). These observations have led to a hypothesis for the complexation pathway that is in line with all of the experimental data and supported by a preliminary density functional theory analysis, which is important for the design of further optimized bispidine chelators. Second, the coordination chemistry of L2 has been extended to Bi3+, La3+, and Pb2+, including solid state and solution structural work, complex stabilities, radiolabeling, and radiostability studies. All complexes of this ligand (La3+, Ac3+, Lu3+, Bi3+, In3+, and Pb2+), including nuclides for targeted α therapy (TAT), single-photon emission computed tomography, and positron emission tomography, are formed efficiently under physiological conditions, i.e., suitable for the labeling of delicate biological vectors such as antibodies, and the complexes are very stable and inert. Importantly, for TAT with 225Ac, the daughter nuclides 213Bi and 209Pb also form stable complexes, and this is important for reducing damage to healthy tissue.


Asunto(s)
Elementos de Series Actinoides , Elementos de la Serie de los Lantanoides , Quelantes/química , Radiofármacos/química , Elementos de la Serie de los Lantanoides/química , Ligandos , Plomo , Iones/química , Acetatos
4.
J Am Chem Soc ; 144(47): 21555-21567, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36382991

RESUMEN

We report a nonadentate bispidine (3,7-diazabicyclo[3.3.1]nonane) that unveils the potential to bind theranostically relevant radionuclides, including indium-111, lutetium-177, and actinium-225 under mild labeling conditions. This radiopharmaceutical candidate allows the simultaneous application of imaging and treatment (radionuclide theranostics) without changing the type of the bioconjugate; that is, it allows the strong binding to an imaging and a therapeutic radionuclide by the same chelator. Since sophisticated coordination chemistry is required to achieve high thermodynamic and kinetic stability (inertness), it is not surprising that only a few chelators have been reported that are able to strongly bind several radionuclides to a satisfactory extent. Bispidine-derived ligands have proven to be ideal for di- and trivalent metal ions with generally fast complexation kinetics and high in vitro and in vivo stabilities. The presented (radio)complexes are formed under mild conditions (pH 6, <40 °C) and exhibit thermodynamic stability and inertness in human serum comparable to the corresponding DOTA complexes. The bispidine-based complexing agent was conjugated to a peptide, targeting somatostatin type 2 receptors (SSTR2), overexpressed on neuroendocrine tumors. The 177Lu- and 225Ac-labeled conjugates were investigated, considering their binding to two different SSTR2-positive cell lines, including the human pancreatic carcinoid tumor (BON-SSTR2+) and the murine pheochromocytoma cell line (MPC). The biodistribution and accumulation pattern in MPC tumor-bearing mice was also evaluated. The LuIII and AcIII complexes studied show how ligand structures can be optimized in general by extending the denticity and varying the donor set in order to allow for fast complex formation and medically relevant inertness.


Asunto(s)
Quelantes , Medicina de Precisión , Animales , Ratones , Humanos , Quelantes/química , Distribución Tisular , Lutecio/química , Lutecio/uso terapéutico , Radioisótopos/química , Radiofármacos/química
5.
J Am Chem Soc ; 144(48): 22212-22220, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36445192

RESUMEN

As an essential metal ion and an efficient relaxation agent, Mn2+ holds a great promise to replace Gd3+ in magnetic resonance imaging (MRI) contrast agent applications, if its stable and inert complexation can be achieved. Toward this goal, four pyridine and one carboxylate pendants have been introduced in coordinating positions on the bispidine platform to yield ligand L3. Thanks to its rigid and preorganized structure and perfect size match for Mn2+, L3 provides remarkably high thermodynamic stability (log KMnL = 19.47), selectivity over the major biological competitor Zn2+ (log(KMnL/KZnL) = 4.4), and kinetic inertness. Solid-state X-ray data show that [MnL3(MeOH)](OTf)2 has an unusual eight-coordinate structure with a coordinated solvent molecule, in contrast to the six-coordinate structure of [ZnL3](OTf), underlining that the coordination cavity is perfectly adapted for Mn2+, while it is too large for Zn2+. In aqueous solution, 17O NMR data evidence one inner sphere water and dissociatively activated water exchange (kex298 = 13.5 × 107 s-1) for MnL3. Its water proton relaxivity (r1 = 4.44 mM-1 s-1 at 25 °C, 20 MHz) is about 30% higher than values for typical monohydrated Mn2+ complexes, which is related to its larger molecular size; its relaxation efficiency is similar to that of clinically used Gd3+-based agents. In vivo MRI experiments realized in control mice at 0.02 mmol/kg injected dose indicate good signal enhancement in the kidneys and fast renal clearance. Taken together, MnL3 is the first chelate that combines such excellent stability, selectivity, inertness and relaxation properties, all of primary importance for MRI use.


Asunto(s)
Imagen por Resonancia Magnética , Agua , Animales , Ratones , Termodinámica
6.
Angew Chem Int Ed Engl ; 61(10): e202115580, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34979049

RESUMEN

While MnII complexes meet increasing interest in biomedical applications, ligands are lacking that enable high MnII complex stability and selectivity vs. ZnII , the most relevant biological competitor. We report here two new bispidine derivatives, which provide rigid and large coordination cavities that perfectly match the size of MnII , yielding eight-coordinate MnII complexes with record stabilities. In contrast, the smaller ZnII ion cannot accommodate all ligand donors, resulting in highly strained and less stable six-coordinate complexes. Combined theoretical and experimental data (X-ray crystallography, potentiometry, relaxometry and 1 H NMR spectroscopy) demonstrate unprecedented selectivity for MnII vs. ZnII (KMnL /KZnL of 108 -1010 ), in sharp contrast to the usual Irving-Williams behavior, and record MnII complex stabilities and inertness with logKMnL close to 25.

7.
Chemistry ; 27(40): 10303-10312, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-33780569

RESUMEN

EuIII , TbIII , GdIII and YbIII complexes of the nonadentate bispidine derivative L2 (bispidine=3,7-diazabicyclo[3.3.1]nonane) were successfully synthesized and their emission properties studied. The X-ray crystallography reveals full encapsulation by the nonadentate ligand L2 that enforces to all LnIII cations a common highly symmetrical capped square antiprismatic (CSAPR) coordination geometry (pseudo C4v symmetry). The well-resolved identical emission spectra in solid state and in solution confirm equal structures in both media. As therefore expected, this results in long-lived excited states and high emission quantum yields ([EuIII L2 ]+ , H2 O, 298 K, τ=1.51 ms, ϕ=0.35; [TbIII L2 ]+ , H2 O, 298 K, τ=1.95 ms, ϕ=0.68). Together with the very high kinetic and thermodynamic stabilities, these complexes are a possible basis for interesting biological probes.


Asunto(s)
Elementos de la Serie de los Lantanoides , Compuestos Bicíclicos Heterocíclicos con Puentes , Ligandos , Luminiscencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...