Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Soc Rev ; 49(8): 2316-2341, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32149284

RESUMEN

Gold nanoparticles (AuNPs) are of considerable interest for diverse applications in areas such as medicine, catalysis, and sensing. AuNPs are generally surface-stabilized by organic matrices and coatings, and while the resultant organic compound (OC)/AuNP hybrids have been explored extensively, they are not suitable for certain applications (e.g. those necessitating reversible redox behaviour and/or long excited-state lifetimes), and they often suffer from low photo- and/or thermal stability. Transition metal complex (TMC)/AuNP hybrids have recently come to the fore as they circumvent some of the aforementioned shortcomings with OC/AuNP hybrids. This review summarizes progress thus far in the nascent field of TMC/AuNP hybrids. The structure and composition of extant TMC/AuNP hybrids are briefly reviewed and the range of TMCs employed in the shell of the hybrids are summarized, the one-phase, two-phase, and post-nanoparticle-synthesis synthetic methods to TMC/AuNP hybrids are discussed and contrasted, highlighting the advantages of variants of the last-mentioned procedure, and the utility of the various characterization techniques is discussed, emphasizing the need to employ multiple techniques in concert. Applications of TMC/AuNP hybrids in luminescence, electrochemical, and electro-optical sensing are described and critiqued, and their uses and potential in imaging, photo-dynamic therapy, nonlinear optics, and catalysis are assessed.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Elementos de Transición/química , Animales , Humanos , Imagen Molecular , Fenómenos Ópticos , Fotoquimioterapia , Elementos de Transición/uso terapéutico
2.
Dalton Trans ; 48(33): 12549-12559, 2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-31367717

RESUMEN

o-Carboranes C-functionalized by (4-substituted-phen-1-yl)ethynyl-1,4-phenyl groups or (2-substituted-fluoren-7-yl)ethynyl-2,7-fluorenyl groups, in which the pendant functionalization is electron-withdrawing nitro or electron-donating diphenylamino groups, have been synthesized and in many cases structurally characterized. Diphenylamino-containing examples coupled via the two π-delocalizable bridges to the electron-accepting o-carborane unit exhibit the greater quadratic optical nonlinearities at 1064 nm (hyper-Rayleigh scattering, ns pulses), the nonlinearities also increasing on proceeding from 1,4-phenylene- to 2,7-fluorenylene-containing bridge. The most NLO-efficient example 2-(n-butyl)-1-(2-((9,9-di(n-butyl)-2-(N,N-diphenylamino)-9H-fluoren-7-yl)ethynyl)-9,9-di(n-butyl)-9H-fluoren-7-yl)-1,2-ortho-carborane, consisting of diphenylamino donor, fluorenyl-containing bridge, o-carborane acceptor, and solubilizing n-butyl units, exhibits large 〈ß〉HRS (230 × 10-30 esu) and frequency-independent (two-level model) 〈ß0〉 (96 × 10-30 esu) values. Coupling two (2-((9,9-di(n-butyl)-2-(N,N-diphenylamino)-9H-fluoren-7-yl)ethynyl)-9,9-di(n-butyl)-9H-fluoren-7-yl) units to the 1,2-ortho-carborane core affords a di-C-functionalized compound with enhanced nonlinearities (309 × 10-30 esu and 129 × 10-30 esu, respectively).

3.
Nano Lett ; 19(2): 756-760, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30620605

RESUMEN

Ruthenium alkynyl "star" complexes with tri(2-thienyl)-, tris(1,2,3-triazolyl)-, or triphenyl-benzene cores stabilize gold nanoparticles (AuNPs). Cyclic voltammetry, transmission electron microscopy, molecular modeling, dynamic light scattering, X-ray photoelectron spectroscopy, and energy-dispersive X-ray spectroscopy studies are consistent with ca. 5 trithienyl- or triazolyl-benzene-cored star complexes decorating the exterior of each AuNP. The ca. 2.5 nm diameter (by transmission electron microscopy) trithienylbenzene-cored gold nanoparticle hybrids are significantly less absorbent than classical Brust nanoparticles stabilized by 1-dodecanethiol; with femtosecond pulsed radiation, they exhibit exceptionally strong saturable absorption and two-photon absorption across the visible range and into the near-infrared region (3 000 000 GM at 500 nm and 46 000 GM at 750 nm; 1 GM is equal to 10-50 cm4 s photon-1).

4.
Chemistry ; 24(61): 16332-16341, 2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30191625

RESUMEN

Straightforward syntheses of bis[bis{1,2-bis(diphenylphosphino)ethane}ruthenium]-functionalized 1,3,5-triethynylbenzene-cored complexes via a methodology employing "steric control" permit facile formation of Y-shaped Sonogashira coupling products and distorted-H-shaped homo-coupled quadrupolar products. Cyclic voltammetric data from these products reveal two reversible metal alkynyl-localized oxidation processes for all complexes. The wavelengths of the linear optical absorption maxima are dominated by the nature of the peripheral alkynyl ligand rather than the substituent at the unique arm of the "Y" or at the quadrupolar complex "core". The quadratic optical nonlinearities of the Y-shaped complexes were assessed by the hyper-Rayleigh scattering technique at 800 nm and employing 100 fs light pulses; introduction of donor NEt2 and/or acceptor NO2 to the wedge periphery resulted in non-zero nonlinearities, with the largest ßHRS,800 values being observed for the complexes containing the 4-nitrophenylalkynyl ligands. Depolarization ratios are consistent with substantial off-diagonal first hyperpolarizability tensor components and 2D nonlinear character. Computational studies employing time-dependent density functional theory have been employed to assign the key low-energy transitions in the linear optical spectra and to compute the quadratic nonlinear optical tensorial components. Cubic optical nonlinearities of the quadrupolar complexes were assessed by the Z-scan technique over the range 500-1600 nm and employing 130 fs light pulses; two-photon absorption cross-sections for these distorted-H-shaped complexes are moderate to large in value (up to 5500 GM at 880 nm), while one example displays significant three-photon absorption (1300×10-80  cm6 s2 at 1200 nm).

5.
Dalton Trans ; 47(32): 11123-11135, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30043792

RESUMEN

A new Zn(ii) porphyrin-based dendrimer (52) containing twelve Ru(ii) alkynyl fragments, has been prepared following a convergent approach in two steps from 5,10,15,20-tetra(4-ethynylphenyl)porphyrinatozinc(ii) (6). The cubic nonlinear optical (NLO) properties of 52 and other derivatives of 6 have been measured by third-harmonic generation (THG) at 1907 nm and by Z-scan over the spectral range 500-1700 nm, revealing the remarkable NLO response of 52 in the near-IR range. These results highlight the beneficial role of the extended "cross fourchée"-like polymetallic structure of 52 on its third-order NLO properties.

6.
Dalton Trans ; 47(13): 4560-4571, 2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29513311

RESUMEN

1-Nitronaphthalenyl-4-alkynyl and 9-nitroanthracenyl-10-alkynyl complexes [M](C[triple bond, length as m-dash]C-4-C10H6-1-NO2) ([M] = trans-[RuCl(dppe)2] (6b), trans-[RuCl(dppm)2] (7b), Ru(PPh3)2(η5-C5H5) (8b), Ni(PPh3)(η5-C5H5) (9b), Au(PPh3) (10b)) and [M](C[triple bond, length as m-dash]C-10-C14H8-9-NO2) ([M] = trans-[RuCl(dppe)2] (6c), trans-[RuCl(dppm)2] (7c), Ru(PPh3)2(η5-C5H5) (8c), Ni(PPh3)(η5-C5H5) (9c), Au(PPh3) (10c)) were synthesized and their identities were confirmed by single-crystal X-ray diffraction studies. Electrochemical studies and a comparison to the 1-nitrophenyl-4-alkynyl analogues [M](C[triple bond, length as m-dash]C-4-C6H4-1-NO2) ([M] = trans-[RuCl(dppe)2] (6a), trans-[RuCl(dppm)2] (7a), Ru(PPh3)2(η5-C5H5) (8a), Ni(PPh3)(η5-C5H5) (9a), Au(PPh3) (10a)) reveal a decrease in oxidation potential for ruthenium and nickel complexes on proceeding from the phenyl- to naphthalenyl- and then anthracenyl-containing bridge. HOMO → LUMO transitions characteristic of MC[triple bond, length as m-dash]C-1-C6H4 to 4-C6H4-1-NO2 charge transfer red-shift and gain in intensity on proceeding to the ruthenium complexes; the low-energy transitions have increasing ILCT character on proceeding from the phenyl- to naphthalenyl- and then anthracenyl-containing bridge. Spectroelectrochemical studies of the Ru-containing complexes reveal the appearance of low-energy bands corresponding to chloro-to-RuIII charge transfer that red-shift on proceeding from the phenyl- to naphthalenyl- and then anthracenyl-containing bridge. Second-order nonlinear optical (NLO) studies at 1064 nm employing ns pulses and the hyper-Rayleigh scattering technique reveal an increase in quadratic optical nonlinearity upon introduction of metal to the precursor alkyne to afford alkynyl complexes and on proceeding from ligated-gold to -nickel and then to -ruthenium for a fixed alkynyl ligand. Quadratic NLO data of the gold complexes optically transparent at the second-harmonic wavelength reveal an increase in ßHRS on proceeding from the phenyl- to the naphthalenyl-containing complex. Broad spectral range third-order nonlinear optical studies employing fs pulses and the Z-scan technique reveal an increase in two-photon absorption cross-section on replacing ligated-gold by -nickel and then -ruthenium for a fixed alkynyl ligand. Computational studies undertaken using time-dependent density functional theory have been employed to assign the nature of the key optical transitions and suggest that the significant optical nonlinearities observed for the ruthenium-containing complexes correlate with the low-energy formally Ru → NO2 band which possesses strong MLCT character, while the more moderate nonlinearities of the gold complexes correlate with a band higher in energy that is primarily ILCT in character.

7.
Chempluschem ; 83(7): 630-642, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31950624

RESUMEN

The syntheses of oligo(p-phenylene ethynylene)s (OPEs) end-functionalized by a nitro acceptor group and with a ligated ruthenium unit at varying locations in the OPE chain, namely, trans-[Ru{(C≡C-1,4-C6 H4 )n NO2 }(C≡CR)(dppe)2 ] (dppe=1,2-bis(diphenylphosphino)ethane; n=1, R=1,4-C6 H4 C≡C-1,4-C6 H4 C≡CPh, 1,4-C6 H4 NEt2 ; n=2, R=Ph, 1,4-C6 H4 C≡CPh, 1,4-C6 H4 C≡C-1,4-C6 H4 C≡CPh, 1,4-C6 H4 NO2 , 1,4-C6 H4 NEt2 ; n=3, R=Ph, 1,4-C6 H4 C≡CPh), are reported. Their electrochemical properties were assessed by cyclic voltammetry, their linear optical properties and quadratic and cubic nonlinear optical properties were assayed by UV/Vis/NIR spectroscopy, hyper-Rayleigh scattering studies employing nanosecond pulses at 1064 nm, and broad spectral range Z-scan studies employing femtosecond pulses, respectively, and their linear optical properties and vibrational spectroscopic behavior in the formally RuIII state was examined by UV/Vis/NIR and IR spectroelectrochemistry, respectively. The potentials of the metal-localized oxidation processes are sensitive to alkynyl-ligand modification, but this effect is attenuated on π-bridge lengthening. Computational studies employing time-dependent density functional theory were undertaken on model complexes, with a 2D scan revealing a soft potential-energy surface for intra-alkynyl-ligand aryl-ring rotation; this is consistent with the experimentally observed blueshift in optical absorption maxima. Quadratic optical nonlinearities are significant and cubic NLO coefficients for these small complexes are small. The optimum length of the alkynyl ligands and the ideal metal location in the OPE to maximize the key coefficients have been defined.

8.
Chemistry ; 23(35): 8395-8399, 2017 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-28488357

RESUMEN

Very large molecular two- and three-photon absorption cross-sections are achieved by appending ligated bis(diphosphine)ruthenium units to oligo(p-phenyleneethynylene) (OPE)-based "stars" with arms up to 7 phenyleneethynylene (PE) units in length. Extremely large three- and four-photon absorption cross-sections, through the telecommunications wavelengths range and beyond, are obtained for these complexes upon optimizing OPE length and the ruthenium-coordinated peripheral ligand. Multi-photon absorption (MPA) cross-sections are optimized with stars possessing arms 2 PE units in length. Peripheral ligand variation modifies MPA merit and, in particular, 4-nitrophenylethynyl ligand incorporation enhances maximal MPA values and "switches on" four-photon absorption (4PA) in these low molecular-weight complexes. The 4-nitrophenylethynyl-ligated 2PE-armed star possesses a maximal four-photon absorption cross-section of 1.8×10-108  cm8 s3 at 1750 nm, and significant MPA activity extending beyond 2000 nm.

9.
Chem Commun (Camb) ; 52(53): 8301-4, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27297290

RESUMEN

Oligo(p-phenylenevinylene)s (OPVs) containing up to 8 PV units and end-functionalized by ruthenium alkynyl groups have been prepared and their nonlinear absorption properties assessed using the Z-scan technique and employing low repetition rate femtosecond pulses. Exceptionally large two-photon absorption (ca. 12 500 GM at 725 nm) and three-photon absorption cross sections (ca. 1.6 × 10(-76) cm(6) s(2) at 1100 nm) are found for the 8PV-containing example, highlighting the potential of an "organometalation" approach to NLO-efficient organic materials.

10.
Phys Chem Chem Phys ; 18(23): 15719-26, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27225829

RESUMEN

Carbazole-carborane linear dyads and di(carbazole)-carborane V-shaped dyads with phenyleneethynylene-based bridges have been synthesized. The V-shaped dyads display the expected red-shifts in the location of their UV-Vis absorption maxima on bridge-lengthening, but show unusual blue-shifts in charge-transfer (CT) emission on the same π-system lengthening. These blue-shifts can be attributed to the 2n + 3 electron count within the carborane cluster in the excited state. The linear dyads luminesce via a combination of local excited (LE) and CT emission, with a red-shift in LE emission and a blue-shift in CT emission accompanying π-bridge elongation. A quantum efficiency as high as 86% in the solution state is achieved from the hybrid LE/CT emission. Time-dependent density functional theory (TD-DFT) calculations at the excited state of these compounds have clarified the photoluminescence blue-shift and suggested a typical cluster C-C bond elongation in the V-shaped dyads. Calculations on the elongated linear dyads have suggested that the electron density is localized at the phenyleneethynylene-containing bridge.

11.
Sci Rep ; 6: 23325, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27011265

RESUMEN

Reduced graphene oxide (RGO)-porphyrin (TPP) nanohybrids (RGO-TPP 1 and RGO-TPP 2) were prepared by two synthetic routes that involve functionalization of the RGO using diazonium salts. The microscopic structures, morphology, photophysical properties and nonlinear optical performance of the resultant RGO-TPP nanohybrids were investigated. The covalent bonding of the porphyrin-functionalized-RGO nanohybrid materials was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and thermogravimetric analysis. Attachment of the porphyrin units to the surface of the RGO by diazotization significantly improves the solubility and ease of processing of these RGO-based nanohybrid materials. Ultraviolet/visible absorption and steady-state fluorescence studies indicate considerable π-π interactions and effective photo-induced electron and/or energy transfer between the porphyrin moieties and the extended π-system of RGO. The nonlinear optical properties of RGO-TPP 1 and RGO-TPP 2 were investigated by open-aperture Z-scan measurements at 532 nm with both 4 ns and 21 ps laser pulses, the results showing that the chemical nanohybrids exhibit improved nonlinear optical properties compared to those of the benchmark material C60, and the constituent RGO or porphyrins.

12.
Chem Commun (Camb) ; 52(19): 3797-800, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26864604

RESUMEN

An ammonium-crown ether host-guest supramolecular cation-templated synthetic methodology has been developed to construct a structurally unprecedented heterobicluster-metal coordination polymer (HCM-CP 1) based on tetranuclear clusters [WS4Cu3](+) with different connection environments, pentanuclear clusters [WS4Cu4](2+), and Cu(+) building metal ions. HCM-CP 1 exhibits enhanced NLO properties, which may be ascribed to the incorporation of diverse building cluster components.

13.
Chemistry ; 22(15): 5128-32, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26868979

RESUMEN

Permutational isomers of trigonal bipyramidal [W2RhIr2(CO)9(η(5)-C5H5)2(η(5)-C5HMe4)] result from competitive capping of either a W2Ir or a WIr2 face of the tetrahedral cluster [W2Ir2(CO)10(η(5)-C5 H5)2] from its reaction with [Rh(CO)2(η(5)-C5HMe4)]. The permutational isomers slowly interconvert in solution by a cluster metal vertex exchange that is proposed to proceed by Rh-Ir and Rh-W bond cleavage and reformation, and via the intermediacy of an edge-bridged tetrahedral transition state. The permutational isomers display differing chemical and physical properties: replacement of CO by PPh3 occurs at one permutational isomer only, while the isomers display distinct optical power limiting behavior.

14.
Angew Chem Int Ed Engl ; 55(7): 2387-91, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26797727

RESUMEN

Large increases in molecular two-photon absorption, the onset of measurable molecular three-photon absorption, and record molecular four-photon absorption in organic π-delocalizable frameworks are achieved by incorporation of bis(diphosphine)ruthenium units with alkynyl linkages. The resultant ruthenium alkynyl-containing dendrimers exhibit strong multiphoton absorption activity through the biological and telecommunications windows in the near-infrared region. The ligated ruthenium units significantly enhance solubility and introduce fully reversible redox switchability to the optical properties. Increasing the ruthenium content leads to substantial increases in multiphoton absorption properties without any loss of optical transparency. This significant improvement in multiphoton absorption performance by incorporation of the organometallic units into the organic π-framework is maintained when the relevant parameters are scaled by molecular weights or number of delocalizable π-electrons. The four-photon absorption cross-section of the most metal-rich dendrimer is an order of magnitude greater than the previous record value.

15.
Chempluschem ; 81(7): 613-620, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31968713

RESUMEN

The syntheses of oligo(p-phenylenevinylene)s (OPVs) end-functionalized with a ligated ruthenium alkynyl unit as a donor and a nitro as acceptor, namely trans-[Ru{C≡C-1-C6 H4 -4-(E)-CH=CH-1-C6 H2 -2,5-Et2 -4-(E)-CH=CH-1-C6 H2 -2,5-Et2 -4-(E)-CH=CH-1-C6 H4 -4-NO2 }Cl(dppe)2 ] (Ru4), trans-[Ru{C≡C-1-C6 H4 -4-(E)-CH=CH-1-C6 H2 -2,5-Et2 -4-(E)-CH=CH-1-C6 H2 -2,5-Et2 -4-(E)-CH=CH-1-C6 H2 -2,5-(n-hexyl)2 -4-(E)-CH=CH-1-C6 H2 -2,5-(n-hexyl)2 -4-(E)-CH=CH-1-C6 H4 -4-NO2 }Cl(dppe)2 ] (Ru6), and trans-[Ru{C≡C-1-C6 H4 -4-(E)-CH=CH-1-C6 H2 -2,5-Et2 -4-(E)-CH=CH-1-C6 H2 -2,5-Et2 -4-(E)-CH=CH-1-C6 H2 -2,5-(n-hexyl)2 -4-(E)-CH=CH-1-C6 H2 -2,5-(n-hexyl)2 -4-(E)-CH=CH-1-C6 H2 -2,5-(2-ethyl-n-hexyl)2 -4-(E)-CH=CH-1-C6 H2 -2,5-(2-ethyl-n-hexyl)2 -4-(E)-CH=CH-1-C6 H4 -4-NO2 }Cl(dppe)2 ] (Ru8), are reported, together with those of precursor alkynes. Their electrochemical properties were assessed by cyclic voltammetry (CV), their linear optical and quadratic nonlinear optical (NLO) properties assayed by UV/Vis-NIR spectroscopy and hyper-Rayleigh scattering studies at 1064 nm, respectively, and their linear optical properties in the formally RuIII state examined by UV/Vis-NIR spectroelectrochemistry. Computational studies employing time-dependent density functional theory were undertaken on model complexes to rationalize the optical observations.

16.
Chempluschem ; 81(7): 621-628, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31968722

RESUMEN

The syntheses of trans-[Ru(C≡C-1-C6 H4 -4-N=N-1-C6 H4 -4-C≡C-1-C6 H4 -4-NO2 )Cl(L2 )2 ] (L2 =dppm (Ru1), dppe) (Ru2)), trans-[Ru(C≡C-1-C6 H4 -4-N=N-1-C6 H4 -4-(E)-CH=CH-1-C6 H4 -4-NO2 )Cl(dppe)2 ] (Ru3), and trans-[Ru(C≡C-1-C6 H4 -4-(E)-CH=CH-1-C6 H2 -2,6-Et2 -4-N=N-1-C6 H4 -4-NO2 )Cl(dppe)2 ] (Ru4) are reported, together with those of precursor alkynes. Their electrochemical properties were assessed by cyclic voltammetry (CV), linear optical and quadratic nonlinear optical (NLO) properties assayed by UV/Vis-NIR spectroscopy and hyper-Rayleigh scattering studies at 1064 nm, respectively, and their linear optical properties in the formally RuIII state examined by UV/Vis-NIR spectroelectrochemistry. These data were compared to those of analogues with E-ene and yne linkages in place of the azo groups. Computational studies using time-dependent density functional theory were undertaken on model compounds (Ru2'-Ru4') to rationalize the optical behaviour of the experimental complexes.

17.
Chemistry ; 21(33): 11843-54, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26179471

RESUMEN

The synthesis of fac-[Ir{N,C1'-(2,2'-NC5H4C6H3-5'-C≡C-1-C6H2-3,5-Et2-4-C≡CC6H4-4-C≡CH)}3] (10), which bears pendant ethynyl groups, and its reaction with [RuCl(dppe)2]PF6 to afford the heterobimetallic complex fac-[Ir{N,C1'-(2,2'-NC5H4C6H3-5'-C≡C-1-C6H2-3,5-Et2-4-C≡CC6H4-4-C≡C-trans-[RuCl(dppe)2])}3] (11) is described. Complex 10 is available from the two-step formation of iodo-functionalized fac-tris[2-(4-iodophenyl)pyridine]iridium(III) (6), followed by ligand-centered palladium-catalyzed coupling and desilylation reactions. Structural studies of tetrakis[2-(4-iodophenyl)pyridine-N,C1'](µ-dichloro)diiridium 5, 6, fac-[Ir{N,C1'-(2,2'-NC5H4C6H3-5'-C≡C-1-C6H2-3,5-Et2-4-C≡CH)}3] (8), and 10 confirm ligand-centered derivatization of the tris(2-phenylpyridine)iridium unit. Electrochemical studies reveal two (5) or one (6­10) Ir-centered oxidations for which the potential is sensitive to functionalization at the phenylpyridine groups but relatively insensitive to more remote derivatization. Compound 11 undergoes sequential Ru-centered and Ir-centered oxidation, with the potential of the latter significantly more positive than that of Ir(N,C'-NC5H4-2-C6H4-2)3. Ligand-centered π­π* transitions characteristic of the Ir(N,C'-NC5H4-2-C6H4-2)3 unit red-shift and gain in intensity following the iodo and alkynyl incorporation. Spectroelectrochemical studies of 6, 7, 9, and 11 reveal the appearance in each case of new low-energy LMCT bands following formal IrIII/IV oxidation preceded, in the case of 11, by the appearance of a low-energy LMCT band associated with the formal RuII/III oxidation process. Emission maxima of 6­10 reveal a red-shift upon alkynyl group introduction and arylalkynyl π-system lengthening; this process is quenched upon incorporation of the ligated ruthenium moiety on proceeding to 11. Third-order nonlinear optical studies of 11 were undertaken at the benchmark wavelengths of 800 nm (fs pulses) and 532 nm (ns pulses), the results from the former suggesting a dominant contribution from two-photon absorption, and results from the latter being consistent with primarily excited-state absorption.

18.
Dalton Trans ; 44(17): 7748-51, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25854620

RESUMEN

A new Zn(ii) porphyrin-cored ruthenium alkynyl dendrimer (2) containing twelve Ru(κ(2)-dppe)2 bis-alkynyl fragments has been prepared in two steps from 5,10,15,20-tetra(4-ethynylphenyl)porphyrinatozinc(ii) and shown to be highly active for third-harmonic generation (THG) at 1907 nm.

19.
Chemistry ; 21(21): 7914-26, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25877804

RESUMEN

Three unusual three-dimensional (3D) tetrazine chromophore-based metal-organic frameworks (MOFs) {(Et4 N)[WS4 Cu3 (CN)2 (4,4'-pytz)0.5 ]}n (1), {[MoS4 Cu4 (CN)2 (4,4'-pytz)2 ]⋅CH2 Cl2 }n (2), and {[WS4 Cu3 (4,4'-pytz)3 ]⋅[N(CN)2 ]}n (3; 4,4'-pytz=3,6-bis(4-pyridyl)tetrazine) have been synthesized and characterized by using FTIR and UV/Vis spectroscopy, elemental analysis, powder X-ray diffraction, gel permeation chromatography, steady-state fluorescence, and thermogravimetric analysis; their identities were confirmed by single-crystal X-ray diffraction studies. MOF 1 possesses the first five-connected M/S/Cu (M=Mo, W) framework with an unusual 3D (4(4) ⋅6(6) ) topology constructed from T-shaped [WS4 Cu3 ](+) clusters as nodes and single CN(-) /4,4'-pytz bridges as linkers. MOF 2 features a novel 3D MOF structure with (4(20) ⋅6(8) ) topology, in which the bridging 4,4'-pytz ligands exhibit unique distorted arch structures. MOF 3 displays the first 3D MOF structure based on flywheel-shaped [WS4 Cu3 ](+) clusters with a non-interpenetrating honeycomb-like framework and a heavily distorted "ACS" topology. Steady-state fluorescence studies of 1-3 reveal significant fluorescence emissions. The nonlinear optical (NLO) properties of 1-3 were investigated by using a Z-scan technique with 5 ns pulses at λ=532 nm. The Z-scan experimental results show that the π-delocalizable tetrazine-based 4,4'-pytz ligands contribute to the strong third-order NLO properties exhibited by 1-3. Time-dependent density functional theory studies afforded insight into the electronic transitions and spectral characterization of these functionalized NLO molecular materials.

20.
Dalton Trans ; 44(16): 7292-304, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25791388

RESUMEN

The trigonal bipyramidal clusters M2Ir3(µ-CO)3(CO)6(η(5)-C5H5)2(η(5)-C5Me4R) (M = Mo, R = Me 1a, R = H; M = W, R = Me, H) reacted with isocyanides to give ligand substitution products M2Ir3(µ-CO)3(CO)5(CNR')(η(5)-C5H5)2(η(5)-C5Me4R) (M = Mo, R = Me, R' = C6H3Me2-2,6 3a; M = Mo, R = Me, R' = (t)Bu 3b), in which core geometry and metal atom locations are maintained, whereas reactions with PPh3 afforded M2Ir3(µ-CO)4(CO)4(PPh3)(η(5)-C5H5)2(η(5)-C5Me4R) (M = Mo, R = Me 4a, H 4c; M = W, R = Me 4b, H), with retention of core geometry but with effective site-exchange of the precursors' apical Mo/W with an equatorial Ir. Similar treatment of trigonal bipyramidal MIr4(µ-CO)3(CO)7(η(5)-C5H5)(η(5)-C5Me5) (M = Mo 2a, W 2b) with PPh3 afforded the mono-substitution products MIr4(µ-CO)3(CO)6(PPh3)(η(5)-C5H5)(η(5)-C5Me5) (M = Mo 5a; M = W 5b), and further reaction of the molybdenum example 5a with excess PPh3 afforded the bis-substituted cluster MoIr4(µ3-CO)2(µ-CO)2(CO)4(PPh3)2(η(5)-C5H5)(η(5)-C5Me5) (6). Reaction of 1a with diphenylacetylene proceeded with alkyne coordination and C≡C cleavage, affording Mo2Ir3(µ4­Î·(2)-PhC2Ph)(µ3-CPh)2(CO)4(η(5)-C5H5)2(η(5)-C5Me5) (7a) together with an isomer. Reactions of 2a and 2b with PhC≡CR afforded MIr4(µ3­Î·(2)-PhC2R)(µ3-CO)2(CO)6(η(5)-C5H5)(η(5)-C5Me5) (M = Mo, R = Ph 8a; M = W, R = Ph 8b, H; M = W, R = C6H4(C2Ph)-3 9a, C6H4(C2Ph)-4), while addition of 0.5 equivalents of the diynes 1,3-C6H4(C2Ph)2 and 1,4-C6H4(C2Ph)2 to WIr4(µ-CO)3(CO)7(η(5)-C5H5)(η(5)-C5Me5) gave the linked clusters [WIr4(CO)8(η(5)-C5H5)(η(5)-C5Me5)]2(µ6­Î·(4)-PhC2C6H4(C2Ph)-X) (X = 3, 4). The structures of 3a, 4a­4c, 5b, 6, 7a, 8a, 8b and 9a were determined by single-crystal X-ray diffraction studies, establishing the core isomerization of 4, the site selectivity for ligand substitution in 3­6, the alkyne C≡C dismutation in 7, and the site of alkyne coordination in 7­9. For clusters 3­6, ease of oxidation increases on increasing donor strength of ligand, increasing extent of ligand substitution, replacing Mo by W, and decreasing core Ir content, the Ir-rich clusters 5 and 6 being the most reversible. For clusters 7­9, ease of oxidation diminishes on replacing Mo by W, increasing the Ir content, and proceeding from mono-yne to diyne, although the latter two changes are small. In situ UV-vis-near-IR spectroelectrochemical studies of the (electrochemically reversible) reduction process of 8b were undertaken, the spectra becoming increasingly broad and featureless following reduction. The incorporation of isocyanides, phosphines, or alkyne residues in these pentanuclear clusters all result in an increased ease of oxidation and decreased ease of reduction, and thereby tune the electron richness of the clusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...