Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(41): e2300305, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37572376

RESUMEN

3D organoids are widely used as tractable in vitro models capable of elucidating aspects of human development and disease. However, the manual and low-throughput culture methods, coupled with a low reproducibility and geometric heterogeneity, restrict the scope and application of organoid research. Combining expertise from stem cell biology and bioengineering offers a promising approach to address some of these limitations. Here, melt electrospinning writing is used to generate tuneable grid scaffolds that can guide the self-organization of pluripotent stem cells into patterned arrays of embryoid bodies. Grid geometry is shown to be a key determinant of stem cell self-organization, guiding the position and size of emerging lumens via curvature-controlled tissue growth. Two distinct methods for culturing scaffold-grown embryoid bodies into either interconnected or spatially discrete cerebral organoids are reported. These scaffolds provide a high-throughput method to generate, culture, and analyze large numbers of organoids, substantially reducing the time investment and manual labor involved in conventional methods of organoid culture. It is anticipated that this methodological development will open up new opportunities for guiding pluripotent stem cell culture, studying lumenogenesis, and generating large numbers of uniform organoids for high-throughput screening.


Asunto(s)
Organoides , Células Madre Pluripotentes , Humanos , Reproducibilidad de los Resultados , Encéfalo
2.
Adv Mater ; 34(32): e2203878, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35731018

RESUMEN

3D printing is a powerful manufacturing technology for shaping materials into complex structures. While the palette of printable materials continues to expand, the rheological and chemical requisites for printing are not always easy to fulfill. Here, a universal manufacturing platform is reported for shaping materials into intricate geometries without the need for their printability, but instead using light-based printed salt structures as leachable molds. The salt structures are printed using photocurable resins loaded with NaCl particles. The printing, debinding, and sintering steps involved in the process are systematically investigated to identify ink formulations enabling the preparation of crack-free salt templates. The experiments reveal that the formation of a load-bearing network of salt particles is essential to prevent cracking of the mold during the process. By infiltrating the sintered salt molds and leaching the template in water, complex-shaped architectures are created from diverse compositions such as biomedical silicone, chocolate, light metals, degradable elastomers, and fiber composites, thus demonstrating the universal, cost-effective, and sustainable nature of this new manufacturing platform.

3.
Macromolecules ; 55(5): 1783-1799, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35431333

RESUMEN

Thermoresponsive polymers with the appropriate structure form physical networks upon changes in temperature, and they find utility in formulation science, tissue engineering, and drug delivery. Here, we report a cost-effective biocompatible alternative, namely OEGMA30015-b-BuMA26-b-DEGMA13, which forms gels at low concentrations (as low as 2% w/w); OEGMA300, BuMA, and DEGMA stand for oligo(ethylene glycol) methyl ether methacrylate (MM = 300 g mol-1), n-butyl methacrylate, and di(ethylene glycol) methyl ether methacrylate, respectively. This polymer is investigated in depth and is compared to its commercially available counterpart, Poloxamer P407 (Pluronic F127). To elucidate the differences in their macroscale gelling behavior, we investigate their nanoscale self-assembly by means of small-angle neutron scattering and simultaneously recording their rheological properties. Two different gelation mechanisms are revealed. The triblock copolymer inherently forms elongated micelles, whose length increases by temperature to form worm-like micelles, thus promoting gelation. In contrast, Pluronic F127's micellization is temperature-driven, and its gelation is attributed to the close packing of the micelles. The gel structure is analyzed through cryogenic scanning and transmission electron microscopy. Ex vivo gelation study upon intracameral injections demonstrates excellent potential for its application to improve drug residence in the eye.

4.
J Extracell Vesicles ; 11(3): e12199, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35233930

RESUMEN

A vaccine antigen, when launched as DNA or RNA, can be presented in various forms, including intracellular, secreted, membrane-bound, or on extracellular vesicles (EVs). Whether an antigen in one or more of these forms is superior in immune induction remains unclear. In this study, we used GFP as a model antigen and first compared the EV-loading efficiency of transmembrane domains (TMs) from various viral glycoproteins, and then investigated whether EV-bound GFP (EV-GFP) would enhance immune induction. Our data showed that GFP fused to viral TMs was successfully loaded onto the surface of EVs. In addition, GFP-bound EVs were predominantly associated with the exosome marker CD81. Immunogenicity study with EV-GFP-producing plasmids in mice demonstrated that antigen-specific IgG and IgA were significantly increased in EV-GFP groups, compared to soluble and intracellular GFP groups. Similarly, GFP-specific T cell response-related cytokines produced by antigen-stimulated splenocytes were also enhanced in mice immunized with EV-GFP constructs. Immunogenicity study with purified soluble GFP and GFP EVs further confirmed the immune enhancement property of EV-GFP in mice. In vitro uptake assays indicated that EV-GFP was more efficiently taken up than soluble GFP by mouse splenocytes and such uptake was B cell preferential. Taken together, our data indicate that viral TMs can efficiently load antigens onto the EV surface, and that EV-bound antigen enhances both humoral and cell-mediated antigen-specific responses.


Asunto(s)
Exosomas , Vesículas Extracelulares , Animales , Transporte Biológico , Citocinas/metabolismo , Exosomas/metabolismo , Glicoproteínas/metabolismo , Ratones
5.
Acta Biomater ; 113: 646-659, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32553919

RESUMEN

Over the last decade, demand has increased for developing new, alternative materials in pediatric trauma care to overcome the disadvantages associated with conventional implant materials. Magnesium (Mg)-based alloys seem to adequately fulfill the vision of a homogeneously resorbable, biocompatible, load-bearing and functionally supportive implant. The aim of the present study is to introduce the high-strength, lean alloy Mg‒0.45Zn‒0.45Ca, in wt% (ZX00), and for the first time investigate the clinical applicability of screw osteosynthesis using this alloy that contains no rare-earth elements. The alloy was applied in a growing sheep model with osteotomized bone (simulating a fracture) and compared to a non-osteotomy control group regarding degradation behavior and fracture healing. The alloy exhibits an ultimate tensile strength of 285.7 ± 3.1 MPa, an elongation at fracture of 18.2 ± 2.1%, and a reduced in vitro degradation rate compared to alloys containing higher amounts of Zn. In vivo, no significant difference between the osteotomized bone and the control group was found regarding the change in screw volume over implantation time. Therefore, it can be concluded that the fracture healing process, including its effects on the surrounding area, has no significant influence on degradation behavior. There was also no negative influence from hydrogen-gas formation on fracture healing. Despite the proximal and distal screws showing chronologically different gas release, the osteotomy showed complete consolidation. STATEMENT OF SIGNIFICANCE: Conventional implants involve several disadvantages in pediatric trauma care. Magnesium-based alloys seem to overcome these issues as discussed in the recent literature. This study evaluates the clinical applicability of high-strength lean Mg‒0.45Zn‒0.45Ca (ZX00) screws in a growing-sheep model. Two groups, one including a simulated fracture and one group without fracture, underwent implantation of the alloy and were compared to each other. No significant difference regarding screw volume was observed between the groups. There was no negative influence of hydrogen-gas formation on fracture healing and a complete fracture consolidation was found after 12 weeks for all animals investigated.


Asunto(s)
Aleaciones , Fracturas Óseas , Implantes Absorbibles , Animales , Calcio , Niño , Humanos , Magnesio , Ensayo de Materiales , Modelos Animales , Zinc
6.
Adv Mater ; 31(42): e1903080, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31486178

RESUMEN

Biodegradable magnesium alloys generally contain intermetallic phases on the micro- or nanoscale, which can initiate and control local corrosion processes via microgalvanic coupling. However, the experimental difficulties in characterizing active degradation on the nanoscale have so far limited the understanding of how these materials degrade in complex physiological environments. Here a quasi-in situ experiment based on transmission electron microscopy (TEM) is designed, which enables the initial corrosion attack at nanometric particles to be accessed within the first seconds of immersion. Combined with high-resolution ex situ cross-sectional TEM analysis of a well-developed corrosion-product layer, mechanistic insights into Mg-alloys' degradation on the nanoscale are provided over a large range of immersion times. Applying this methodology to lean Mg-Zn-Ca alloys and following in detail the dissolution of their nanometric Zn- and Ca-rich particles the in statu nascendi observation of intermetallic-particle dealloying is documented for magnesium alloys, where electrochemically active Ca and Mg preferentially dissolve and electropositive Zn enriches, inducing the particles' gradual ennoblement. Based on electrochemical theory, here, the concept of cathodic-polarization-induced dealloying, which controls the dynamic microstructural changes, is presented. The general prerequisites for this new dealloying mechanism to occur in multicomponent alloys and its distinction to other dealloying modes are also discussed.

7.
Adv Mater ; 31(37): e1903783, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31353635

RESUMEN

Porosity is an essential feature in a wide range of applications that combine light weight with high surface area and tunable density. Porous materials can be easily prepared with a vast variety of chemistries using the salt-leaching technique. However, this templating approach has so far been limited to the fabrication of structures with random porosity and relatively simple macroscopic shapes. Here, a technique is reported that combines the ease of salt leaching with the complex shaping possibilities given by additive manufacturing (AM). By tuning the composition of surfactant and solvent, the salt-based paste is rheologically engineered and printed via direct ink writing into grid-like structures displaying structured pores that span from the sub-millimeter to the macroscopic scale. As a proof of concept, dried and sintered NaCl templates are infiltrated with magnesium (Mg), which is typically highly challenging to process by conventional AM techniques due to its highly oxidative nature and high vapor pressure. Mg scaffolds with well-controlled, ordered porosity are obtained after salt removal. The tunable mechanical properties and the potential to be predictably bioresorbed by the human body make these Mg scaffolds attractive for biomedical implants and demonstrate the great potential of this additive technique.

8.
Acta Biomater ; 98: 67-80, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31254685

RESUMEN

Microstructural refinement of magnesium (Mg) alloys is beneficial for mechanical and corrosion properties, both of which are critical for their successful application as temporary implant materials. One method of achieving a refined microstructure is through rapid solidification via gas-atomization-powder production. In this study we investigated spark plasma sintering (SPS) as a potential processing method for maintaining this refined microstructure while achieving a range of porosities up to full densification. We characterized the microstructural evolution as a function of sintering temperature from 250 to 450 °C for the alloy WE43 using multi-scale correlative microscopy techniques, including light microscopy and scanning and transmission electron microscopy-based methods. The spatial distribution of the two major alloying elements, neodymium (Nd) and yttrium (Y), was determined and the intermetallic phases they form identified using energy dispersive X-ray spectroscopy in conjunction with electron diffraction. The gas-atomized powder microstructure consists of Mg-rich dendrites and a percolating interdendritic Mg-Nd-Y ternary phase with structure Mg14Nd2Y, surrounded by a high Nd and Y content in solid solution. This microstructure is maintained up to a sintering temperature of 350 °C, while with higher sintering temperatures segregation of Nd and Y dominates. The percolating ternary phase breaks up into faceted globular precipitates with structure Mg5Nd, which is isomorphous to Mg14Nd2Y. Y comes out of solution and migrates to previous powder-particle surfaces, possibly forming Y2O3. Sample densities ranged from 64 to 100% for sintering temperatures of 250 to 450 °C, respectively, and the grain size remained constant at about 10 µm. SPS is demonstrated to be an attractive alternative method for processing Mg alloys to a wide range of porosities and fine microstructures. The microstructural refinement achieved by SPS holds the potential for slow and homogeneous corrosion. STATEMENT OF SIGNIFICANCE: This study presents the impact spark plasma sintering (SPS) has on the microstructure of WE43, a magnesium alloy used for biodegradable implants. SPS is of great interest in this context as it is scalable, rapid, and has the potential for tuning density while maintaining a refined microstructure. The microstructure and density are explored from the gas-atomized powder to the densified material using electron microscopy and chemical mapping from the macro- to the nano-level. The insights gained reveal an original evolution of rare-earth element distribution with an isomorphous chemistry change, while the microstructure develops from the non-equilibrium state (powder) towards an equilibrium structure upon sintering. This study, including measurements of mechanical performance, sets the premises of SPS for the fabrication of Mg-based implants with tunable characteristics.


Asunto(s)
Aleaciones/química , Materiales Biocompatibles/química , Magnesio/química , Ensayo de Materiales/métodos , Gases em Plasma/química , Electrones , Dureza , Difracción de Rayos X
9.
J Biomed Mater Res B Appl Biomater ; 106(5): 1907-1917, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28941327

RESUMEN

This paper studied the influence of two common sterilization techniques, ethylene oxide (EO) and gamma irradiation (GI), on the corrosion rate of four Mg-based materials in CO2 -bicarbonate buffered Hanks' solution. The four materials were: high-purity (HP)-Mg, ZE41, ultra-high purity (XHP)-Mg, and XHP-ZX00. The corrosion rate was measured through mass loss (Pm ) and hydrogen evolution (PH ). Two-way analysis of variance (ANOVA) was conducted to assess the effect of the sterilization techniques on the corrosion rates across the four materials. The ANOVA analyzed the variables of (1) material, (2) sterilization condition (EO, GI, and an unsterilized control group), and (3) the interaction between these two independent variables. Neither sterilization technique (EO and GI) significantly influenced the corrosion rate as measured by Pm (p < 0.84) nor PH (p < 0.08). This result was consistent across the four materials tested, as there was no interaction between the test variables of material and sterilization condition for Pm (p < 0.49) or PH (p < 0.27). As neither EO nor GI influenced the corrosion rates, either of these techniques warrants consideration for use on Mg-based medical implants and devices. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1907-1917, 2018.


Asunto(s)
Aleaciones/química , Magnesio/química , Esterilización/métodos , Corrosión
10.
Acta Biomater ; 33: 301-10, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26802440

RESUMEN

Porous titanium implants are widely used in dental, orthopaedic and otorhinolaryngology fields to improve implant integration to host tissue. A possible step further to improve the integration with the host is the incorporation of autologous cells in porous titanium structures via cell-laden hydrogels. Fast gelling hydrogels have advantageous properties for in situ applications such as localisation of specific cells and growth factors at a target area without dispersion. The ability to control the cell types in different regions of an implant is important in applications where the target tissue (i) has structural heterogeneity (multiple cell types with a defined spatial configuration with respect to each other); (ii) has physical property gradients essential for its function (such as in the case of osteochondral tissue transition). Due to their near immediate gelation, such gels can also be used for site-specific modification of porous titanium structures, particularly for implants which would face different tissues at different locations. Herein, we describe a step by step design of a model system: the model cell-laden gel-containing porous titanium implants in the form of titanium microbead/hydrogel (maleimide-dextran or maleimide-PVA based) microhybrids. These systems enable the determination of the effect of titanium presence on gel properties and encapsulated cell behaviour as a miniaturized version of full-scale implants, providing a system compatible with conventional analysis methods. We used a fibroblast/vascular endothelial cell co-cultures as our model system and by utilising single microbeads we have quantified the effect of gel microenvironment (degradability, presence of RGD peptides within gel formulation) on cell behaviour and the effect of the titanium presence on cell behaviour and gel formation. Titanium presence slightly changed gel properties without hindering gel formation or affecting cell viability. Cells showed a preference to move towards the titanium beads and fibroblast proliferation was significantly higher in hybrids compared to gel only controls. The MMP (Matrix Metalloproteinase)-sensitive hydrogels induced sprouting by cells in co-culture configuration which was quantified by fluorescence microscopy, confocal microscopy and qRT-PCR (Quantitative Reverse transcription polymerase chain reaction). When the microhybrid up-scaled to 3D thick structures, cellular localisation in specific areas of the 3D titanium structures was achieved, without decreasing overall cell proliferation compared to titanium only scaffolds. Microhybrids of titanium and hydrogels are useful models for deciding the necessary modifications of metallic implants and they can be used as a modelling system for the study of tissue/titanium implant interactions. STATEMENT OF SIGNIFICANCE: This article demonstrates a method to apply cell-laden hydrogels to porous titanium implants and a model of titanium/hydrogel interaction at micro-level using titanium microbeads. The feasibility of site-specific modification of titanium implants with cell-laden microgels has been demonstrated. Use of titanium microbeads in combination with hydrogels with conventional analysis techniques as described in the article can facilitate the characterisation of surface modification of titanium in a relevant model system.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/citología , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Metales/farmacología , Oseointegración/efectos de los fármacos , Prótesis e Implantes , Titanio/farmacología , Células 3T3 , Animales , Proliferación Celular/efectos de los fármacos , Células Inmovilizadas/citología , Células Inmovilizadas/efectos de los fármacos , Técnicas de Cocultivo , Perfilación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones , Microesferas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...