Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
iScience ; 27(1): 108596, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38174322

RESUMEN

Adaptive plasticity to the standard chemotherapeutic temozolomide (TMZ) leads to glioblastoma progression. Here, we examine early stages of this process in patient-derived cellular models, exposing the human lysine-specific demethylase 5B (KDM5B) as a prospective indicator for subclonal expansion. By integration of a reporter, we show its preferential activity in rare, stem-like ALDH1A1+ cells, immediately increasing expression upon TMZ exposure. Naive, genetically unmodified KDM5Bhigh cells phosphorylate AKT (pAKT) and act as slow-cycling persisters under TMZ. Knockdown of KDM5B reverses pAKT levels, simultaneously increasing PTEN expression and TMZ sensitivity. Pharmacological inhibition of PTEN rescues the effect. Interference with KDM5B subsequent to TMZ decreases cellular vitality, and clonal tracing with DNA barcoding demonstrates high individual levels of KDM5B to predict subclonal expansion already before TMZ exposure. Thus, KDM5Bhigh treatment-naive cells preferentially contribute to the dynamics of drug resistance under TMZ. These findings may serve as a cornerstone for future biomarker-assisted clinical trials.

2.
Clin Cancer Res ; 29(2): 488-500, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36239995

RESUMEN

PURPOSE: Therapy resistance and fatal disease progression in glioblastoma are thought to result from the dynamics of intra-tumor heterogeneity. This study aimed at identifying and molecularly targeting tumor cells that can survive, adapt, and subclonally expand under primary therapy. EXPERIMENTAL DESIGN: To identify candidate markers and to experimentally access dynamics of subclonal progression in glioblastoma, we established a discovery cohort of paired vital cell samples obtained before and after primary therapy. We further used two independent validation cohorts of paired clinical tissues to test our findings. Follow-up preclinical treatment strategies were evaluated in patient-derived xenografts. RESULTS: We describe, in clinical samples, an archetype of rare ALDH1A1+ tumor cells that enrich and acquire AKT-mediated drug resistance in response to standard-of-care temozolomide (TMZ). Importantly, we observe that drug resistance of ALDH1A1+ cells is not intrinsic, but rather an adaptive mechanism emerging exclusively after TMZ treatment. In patient cells and xenograft models of disease, we recapitulate the enrichment of ALDH1A1+ cells under the influence of TMZ. We demonstrate that their subclonal progression is AKT-driven and can be interfered with by well-timed sequential rather than simultaneous antitumor combination strategy. CONCLUSIONS: Drug-resistant ALDH1A1+/pAKT+ subclones accumulate in patient tissues upon adaptation to TMZ therapy. These subclones may therefore represent a dynamic target in glioblastoma. Our study proposes the combination of TMZ and AKT inhibitors in a sequential treatment schedule as a rationale for future clinical investigation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Proteínas Proto-Oncogénicas c-akt , Resistencia a Antineoplásicos/genética , Temozolomida , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico
3.
Nat Commun ; 13(1): 156, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013174

RESUMEN

Immune evasion is indispensable for cancer initiation and progression, although its underlying mechanisms in pancreatic ductal adenocarcinoma (PDAC) are not fully known. Here, we characterize the function of tumor-derived PGRN in promoting immune evasion in primary PDAC. Tumor- but not macrophage-derived PGRN is associated with poor overall survival in PDAC. Multiplex immunohistochemistry shows low MHC class I (MHCI) expression and lack of CD8+ T cell infiltration in PGRN-high tumors. Inhibition of PGRN abrogates autophagy-dependent MHCI degradation and restores MHCI expression on PDAC cells. Antibody-based blockade of PGRN in a PDAC mouse model remarkably decelerates tumor initiation and progression. Notably, tumors expressing LCMV-gp33 as a model antigen are sensitized to gp33-TCR transgenic T cell-mediated cytotoxicity upon PGRN blockade. Overall, our study shows a crucial function of tumor-derived PGRN in regulating immunogenicity of primary PDAC.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Antígenos de Histocompatibilidad Clase I/genética , Neoplasias Pancreáticas/genética , Progranulinas/genética , Escape del Tumor/genética , Adenocarcinoma/inmunología , Adenocarcinoma/mortalidad , Adenocarcinoma/terapia , Animales , Anticuerpos Neutralizantes/farmacología , Antígenos Virales/genética , Antígenos Virales/inmunología , Autofagia/efectos de los fármacos , Autofagia/genética , Autofagia/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/terapia , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Estudios de Cohortes , Citotoxicidad Inmunológica , Expresión Génica , Glicoproteínas/genética , Glicoproteínas/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/terapia , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Progranulinas/antagonistas & inhibidores , Progranulinas/inmunología , Proteolisis , Análisis de Supervivencia , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Commun ; 12(1): 3895, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162860

RESUMEN

Brain tumors are typically immunosuppressive and refractory to immunotherapies for reasons that remain poorly understood. The unbiased profiling of immune cell types in the tumor microenvironment may reveal immunologic networks affecting therapy and course of disease. Here we identify and validate the presence of hematopoietic stem and progenitor cells (HSPCs) within glioblastoma tissues. Furthermore, we demonstrate a positive link of tumor-associated HSPCs with malignant and immunosuppressive phenotypes. Compared to the medullary hematopoietic compartment, tumor-associated HSPCs contain a higher fraction of immunophenotypically and transcriptomically immature, CD38- cells, such as hematopoietic stem cells and multipotent progenitors, express genes related to glioblastoma progression and display signatures of active cell cycle phases. When cultured ex vivo, tumor-associated HSPCs form myeloid colonies, suggesting potential in situ myelopoiesis. In experimental models, HSPCs promote tumor cell proliferation, expression of the immune checkpoint PD-L1 and secretion of tumor promoting cytokines such as IL-6, IL-8 and CCL2, indicating concomitant support of both malignancy and immunosuppression. In patients, the amount of tumor-associated HSPCs in tumor tissues is prognostic for patient survival and correlates with immunosuppressive phenotypes. These findings identify an important element in the complex landscape of glioblastoma that may serve as a target for brain tumor immunotherapies.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Células Cultivadas , Progresión de la Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Estimación de Kaplan-Meier , RNA-Seq/métodos , Transducción de Señal/genética , Análisis de la Célula Individual/métodos , Microambiente Tumoral/genética
5.
Micromachines (Basel) ; 11(5)2020 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397447

RESUMEN

Deformability is shown to correlate with the invasiveness and metastasis of cancer cells. Recent studies suggest epithelial-to-mesenchymal transition (EMT) might enable cancer metastasis. However, the correlation of EMT with cancer cell deformability has not been well elucidated. Cellular deformability could also help evaluate the drug response of cancer cells. Here, we combine hydrodynamic stretching and microsieve filtration to study cellular deformability in several cellular models. Hydrodynamic stretching uses extensional flow to rapidly quantify cellular deformability and size with high throughput at the single cell level. Microsieve filtration can rapidly estimate relative deformability in cellular populations. We show that colorectal cancer cell line RKO with the mesenchymal-like feature is more flexible than the epithelial-like HCT116. In another model, the breast epithelial cells MCF10A with deletion of the TP53 gene are also significantly more deformable compared to their isogenic wildtype counterpart, indicating a potential genetic link to cellular deformability. We also find that the drug docetaxel leads to an increase in the size of A549 lung cancer cells. The ability to associate mechanical properties of cancer cells with their phenotypes and genetics using single cell hydrodynamic stretching or the microsieve may help to deepen our understanding of the basic properties of cancer progression.

6.
Cancers (Basel) ; 12(2)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033141

RESUMEN

Early detection of cancer holds high promise for reducing cancer-related mortality. Detection of circulating tumor-specific nucleic acids holds promise, but sensitivity and specificity issues remain with current technology. We studied cell-free RNA (cfRNA) in patients with non-small cell lung cancer (NSCLC; n = 56 stage IV, n = 39 stages I-III), pancreatic cancer (PDAC, n = 20 stage III), malignant melanoma (MM, n = 12 stage III-IV), urothelial bladder cancer (UBC, n = 22 stage II and IV), and 65 healthy controls by means of next generation sequencing (NGS) and real-time droplet digital PCR (RT-ddPCR). We identified 192 overlapping upregulated transcripts in NSCLC and PDAC by NGS, more than 90% of which were noncoding. Previously reported transcripts (e.g., HOTAIRM1) were identified. Plasma cfRNA transcript levels of POU6F2-AS2 discriminated NSCLC from healthy donors (AUC = 0.82 and 0.76 for stages IV and I-III, respectively) and significantly associated (p = 0.017) with the established tumor marker Cyfra 21-1. cfRNA yield and POU6F2-AS transcript abundance discriminated PDAC patients from healthy donors (AUC = 1.0). POU6F2-AS2 transcript was significantly higher in MM (p = 0.044). In summary, our findings support further validation of cfRNA detection by RT-ddPCR as a biomarker for early detection of solid cancers.

7.
Biomicrofluidics ; 13(4): 041503, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31431816

RESUMEN

Early cancer detection, its monitoring, and therapeutical prediction are highly valuable, though extremely challenging targets in oncology. Significant progress has been made recently, resulting in a group of devices and techniques that are now capable of successfully detecting, interpreting, and monitoring cancer biomarkers in body fluids. Precise information about malignancies can be obtained from liquid biopsies by isolating and analyzing circulating tumor cells (CTCs) or nucleic acids, tumor-derived vesicles or proteins, and metabolites. The current work provides a general overview of the latest on-chip technological developments for cancer liquid biopsy. Current challenges for their translation and their application in various clinical settings are discussed. Microfluidic solutions for each set of biomarkers are compared, and a global overview of the major trends and ongoing research challenges is given. A detailed analysis of the microfluidic isolation of CTCs with recent efforts that aimed at increasing purity and capture efficiency is provided as well. Although CTCs have been the focus of a vast microfluidic research effort as the key element for obtaining relevant information, important clinical insights can also be achieved from alternative biomarkers, such as classical protein biomarkers, exosomes, or circulating-free nucleic acids. Finally, while most work has been devoted to the analysis of blood-based biomarkers, we highlight the less explored potential of urine as an ideal source of molecular cancer biomarkers for point-of-care lab-on-chip devices.

8.
Nat Genet ; 50(12): 1754, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420650

RESUMEN

In the version of the article published, the author list is not accurate. Igor Cima and Min-Han Tan should have been authors, appearing after Mark Wong in the author list, while Paul Jongjoon Choi should not have been listed as an author. Igor Cima and Min-Han Tan both have the affiliation Institute of Bioengineering and Nanotechnology, Singapore, Singapore, and their contributions should have been noted in the Author Contributions section as "I.C. preprocessed Primary Cell Atlas data with inputs from M.-H.T." The following description of the contribution of Paul Jongjoon Choi should not have appeared: "P.J.C. supported the smFISH experiments." In the 'RCA: global panel' section of the Online Methods, the following sentence should have appeared as the second sentence, "An expression atlas of human primary cells (the Primary Cell Atlas) was preprocessed similarly to in ref. 55," with new reference 55 (Cima, I. et al. Tumor-derived circulating endothelial cell clusters in colorectal cancer. Science Transl. Med. 8, 345ra89, 2016).

9.
Oncotarget ; 8(40): 68026-68037, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28978093

RESUMEN

Studies on circulating tumor cells (CTCs) have largely focused on platform development and CTC enumeration rather than on the genomic characterization of CTCs. To address this, we performed targeted sequencing of CTCs of colorectal cancer patients and compared the mutations with the matched primary tumors. We collected preoperative blood and matched primary tumor samples from 48 colorectal cancer patients. CTCs were isolated using a label-free microfiltration device on a silicon microsieve. Upon whole genome amplification, we performed amplicon-based targeted sequencing on a panel of 39 druggable and frequently mutated genes on both CTCs and fresh-frozen tumor samples. We developed an analysis pipeline to minimize false-positive detection of somatic mutations in amplified DNA. In 60% of the CTC-enriched blood samples, we detected primary tumor matching mutations. We found a significant positive correlation between the allele frequencies of somatic mutations detected in CTCs and abnormal CEA serum level. Strikingly, we found driver mutations and amplifications in cancer and druggable genes such as APC, KRAS, TP53, ERBB3, FBXW7 and ERBB2. In addition, we found that CTCs carried mutation signatures that resembled the signatures of their primary tumors. Cumulatively, our study defined genetic signatures and somatic mutation frequency of colorectal CTCs. The identification of druggable mutations in CTCs of preoperative colorectal cancer patients could lead to more timely and focused therapeutic interventions.

10.
Sci Transl Med ; 8(345): 345ra89, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27358499

RESUMEN

Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.


Asunto(s)
Neoplasias Colorrectales/patología , Células Neoplásicas Circulantes , Línea Celular , Neoplasias Colorrectales/genética , Humanos , Queratinas/genética , Queratinas/metabolismo , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/metabolismo , Familia de Multigenes/genética , Pronóstico , Células Tumorales Cultivadas
11.
Breast Cancer Res ; 18(1): 31, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26961242

RESUMEN

BACKGROUND: Breast fibroepithelial lesions are biphasic tumors and include fibroadenomas and phyllodes tumors. Preoperative distinction between fibroadenomas and phyllodes tumors is pivotal to clinical management. Fibroadenomas are clinically benign while phyllodes tumors are more unpredictable in biological behavior, with potential for recurrence. Differentiating the tumors may be challenging when they have overlapping clinical and histological features especially on core biopsies. Current molecular and immunohistochemical techniques have a limited role in the diagnosis of breast fibroepithelial lesions. We aimed to develop a practical molecular test to aid in distinguishing fibroadenomas from phyllodes tumors in the pre-operative setting. METHODS: We profiled the transcriptome of a training set of 48 formalin-fixed, paraffin-embedded fibroadenomas and phyllodes tumors and further designed 43 quantitative polymerase chain reaction (qPCR) assays to verify differentially expressed genes. Using machine learning to build predictive regression models, we selected a five-gene transcript set (ABCA8, APOD, CCL19, FN1, and PRAME) to discriminate between fibroadenomas and phyllodes tumors. We validated our assay in an independent cohort of 230 core biopsies obtained pre-operatively. RESULTS: Overall, the assay accurately classified 92.6 % of the samples (AUC = 0.948, 95 % CI 0.913-0.983, p = 2.51E-19), with a sensitivity of 82.9 % and specificity of 94.7 %. CONCLUSIONS: We provide a robust assay for classifying breast fibroepithelial lesions into fibroadenomas and phyllodes tumors, which could be a valuable tool in assisting pathologists in differential diagnosis of breast fibroepithelial lesions.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Diagnóstico Diferencial , Fibroadenoma/diagnóstico , Tumor Filoide/diagnóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Neoplasias/biosíntesis , Antígenos de Neoplasias/genética , Apolipoproteínas D/biosíntesis , Apolipoproteínas D/genética , Biopsia , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Quimiocina CCL19/biosíntesis , Quimiocina CCL19/genética , Femenino , Fibroadenoma/genética , Fibroadenoma/patología , Fibronectinas/biosíntesis , Fibronectinas/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Tumor Filoide/genética , Tumor Filoide/patología , Periodo Preoperatorio , Transcriptoma/genética
12.
Mol Oncol ; 9(4): 850-60, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25605225

RESUMEN

Characterization of genetic alterations in tumor biopsies serves as useful biomarkers in prognosis and treatment management. Circulating tumor cells (CTCs) obtained non-invasively from peripheral blood could serve as a tumor proxy. Using a label-free CTC enrichment strategy that we have established, we aimed to develop sensitive assays for qualitative assessment of tumor genotype in patients. Blood consecutively obtained from 44 patients with local and advanced colorectal cancer and 18 healthy donors were enriched for CTCs using a size-based microsieve technology. To screen for CTC mutations, we established high-resolution melt (HRM) and allele-specific PCR (ASPCR) KRAS-codon 12/13- and BRAF-codon 600- specific assays, and compared the performance with pyrosequencing and Sanger sequencing. For each patient, the resulting CTC genotypes were compared with matched tumor and normal tissues. Both HRM and ASPCR could detect as low as 1.25% KRAS- or BRAF-mutant alleles. HRM detected 14/44 (31.8%) patients with KRAS mutation in CTCs and 5/44 (11.3%) patients having BRAF mutation in CTCs. ASPCR detected KRAS and BRAF mutations in CTCs of 10/44 (22.7%) and 1/44 (2.3%) patients respectively. There was an increased detection of mutation in blood using these two methods. Comparing tumor tissues and CTCs mutation status using HRM, we observed 84.1% concordance in KRAS genotype (p = 0.000129, Fishers' exact test; OR = 38.7, 95% CI = 4.05-369) and 90.9% (p = 0.174) concordance in BRAF genotype. Our results demonstrate that CTC enrichment, coupled with sensitive mutation detection methods, may allow rapid, sensitive and non-invasive assessment of tumor genotype.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Mutación/genética , Células Neoplásicas Circulantes/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas/genética , Proteínas ras/genética , Adulto , Anciano , Alelos , Secuencia de Bases , Análisis Mutacional de ADN , Femenino , Técnicas de Genotipaje , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Desnaturalización de Ácido Nucleico , Reacción en Cadena de la Polimerasa , Valor Predictivo de las Pruebas , Proteínas Proto-Oncogénicas p21(ras) , Sensibilidad y Especificidad
13.
Biomicrofluidics ; 7(1): 11810, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24403992

RESUMEN

This review will cover the recent advances in label-free approaches to isolate and manipulate circulating tumor cells (CTCs). In essence, label-free approaches do not rely on antibodies or biological markers for labeling the cells of interest, but enrich them using the differential physical properties intrinsic to cancer and blood cells. We will discuss technologies that isolate cells based on their biomechanical and electrical properties. Label-free approaches to analyze CTCs have been recently invoked as a valid alternative to "marker-based" techniques, because classical epithelial and tumor markers are lost on some CTC populations and there is no comprehensive phenotypic definition for CTCs. We will highlight the advantages and drawbacks of these technologies and the status on their implementation in the clinics.

14.
Neoplasia ; 14(6): 535-46, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22806541

RESUMEN

The identification of cell surface accessible biomarkers enabling diagnosis, disease monitoring, and treatment of renal cell carcinoma (RCC) is as challenging as the biology and progression of RCC is unpredictable. A hallmark of most RCC is the loss-of-function of the von Hippel-Lindau (pVHL) protein by mutation of its gene (VHL). Using the cell surface capturing (CSC) technology, we screened and identified cell surface N-glycoproteins in pVHL-negative and positive 786-O cells. One hundred six cell surface N-glycoproteins were identified. Stable isotope labeling with amino acids in cell culture-based quantification of the CSC screen revealed 23 N-glycoproteins whose abundance seemed to change in a pVHL-dependent manner. Targeted validation experiments using transcriptional profiling of primary RCC samples revealed that nine glycoproteins, including CD10 and AXL, could be directly linked to pVHL-mediated transcriptional regulation. Subsequent human tumor tissue analysis of these cell surface candidate markers showed a correlation between epithelial AXL expression and aggressive tumor phenotype, indicating that pVHL-dependent regulation of glycoproteins may influence the biologic behavior of RCC. Functional characterization of the metalloprotease CD10 in cell invasion assays demonstrated a diminished penetrating behavior of pVHL-negative 786-O cells on treatment with the CD10-specific inhibitor thiorphan. Our proteomic surfaceome screening approach in combination with transcriptional profiling and functional validation suggests pVHL-dependent cell surface glycoproteins as potential diagnostic markers for therapeutic targeting and RCC patient monitoring.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma de Células Renales/genética , Línea Celular , Regulación Neoplásica de la Expresión Génica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Neoplasias Renales/genética , Proteínas de la Membrana/genética , Neprilisina/sangre , Neprilisina/genética , Neprilisina/metabolismo , Proteómica , Reproducibilidad de los Resultados
15.
Cancer Inform ; 11: 139-46, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22619501

RESUMEN

Mutations in cancer-causing genes induce changes in gene expression programs critical for malignant cell transformation. Publicly available gene expression profiles produced by modulating the expression of distinct cancer genes may therefore represent a rich resource for the identification of gene signatures common to seemingly unrelated cancer genes. We combined automatic retrieval with manual validation to obtain a data set of high-quality gene microarray profiles. This data set was used to create logical models of the signaling events underlying the observed expression changes produced by various cancer genes and allowed to uncover unknown and verifiable interactions. Data clustering revealed novel sets of gene expression profiles commonly regulated by distinct cancer genes. Our method allows retrieval of significant new information and testable hypotheses from a pool of deposited cancer gene expression experiments that are otherwise not apparent or appear insignificant from single measurements. The complete results are available through a web-application at http://biodata.ethz.ch/cgi-bin/geologic.

16.
Eur Urol ; 60(6): 1235-43, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21741162

RESUMEN

BACKGROUND: Metastatic castration-resistant prostate cancer (mCRPC) is associated with a poor outcome. Prognostic information is useful and aids treatment decisions. However, current nomograms based on clinical parameters alone have weak prognostic accuracy. Therefore, the identification of new prognostic serum biomarkers could be useful. OBJECTIVES: To assess if quantitative analysis of the phosphatase and tensin homolog (Pten) conditional knockout mouse proteome reveals significant prognostic biomarkers in mCRPC and to compare the accuracy of these biomarkers with known prognostic factors. DESIGN, SETTING, AND PARTICIPANTS: Fifty-seven patients with mCRPC were evaluated retrospectively. Prognostic factors used in clinical nomograms were assessed from the records. New candidate biomarkers in patients' sera were derived using a cancer genetics-guided model we recently described, screening the murine Pten-dependent glycoproteome. MEASUREMENTS: Quantification in patients' sera was performed by either mass spectrometry-based targeted proteomics or enzyme-linked immunosorbent assays. Prognostic biomarkers for survival were identified based on Kaplan-Meier models. In a second step, random forest analysis was performed to identify a prognostic signature combined from the pooled data of known predictors and newly identified biomarkers. RESULTS AND LIMITATIONS: With univariate analysis, 13 new significant prognostic factors for survival in the sera of mCRPC patients were found with a Bonferroni-corrected level of significance <5%. Random forest analysis revealed a five-factor predictor (thrombospondin 1; C-reactive protein; poliovirus receptor-related 1; ephrin-A5; and membrane metallo-endopeptidase) with an accuracy of 96% and 94% for 12- and 24-mo survival, respectively. This means that, in our dataset, the error was reduced by 15% compared to using the Halabi et al. nomogram. The retrospective nature of the work and absence of a validating dataset is the major limitation of this work. CONCLUSIONS: Analysis of the serum proteome in mCRPC patients based on our Pten conditional knockout model, combined with known prognostic factors, potentially improves accuracy of prognostic nomograms. These newly identified markers have to be validated in prospective studies.


Asunto(s)
Antagonistas de Andrógenos/uso terapéutico , Antineoplásicos Hormonales/uso terapéutico , Biomarcadores de Tumor/sangre , Fosfohidrolasa PTEN/deficiencia , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/terapia , Anciano , Anciano de 80 o más Años , Animales , Proteína C-Reactiva/análisis , Moléculas de Adhesión Celular/sangre , Resistencia a Antineoplásicos , Ensayo de Inmunoadsorción Enzimática , Efrina-A5/sangre , Humanos , Estimación de Kaplan-Meier , Masculino , Espectrometría de Masas , Ratones , Ratones Noqueados , Persona de Mediana Edad , Nectinas , Neprilisina/sangre , Nomogramas , Fosfohidrolasa PTEN/genética , Valor Predictivo de las Pruebas , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/secundario , Proteómica/métodos , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Tasa de Supervivencia , Suiza , Trombospondina 1/sangre , Factores de Tiempo , Insuficiencia del Tratamiento
17.
Proc Natl Acad Sci U S A ; 108(8): 3342-7, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21300890

RESUMEN

A key barrier to the realization of personalized medicine for cancer is the identification of biomarkers. Here we describe a two-stage strategy for the discovery of serum biomarker signatures corresponding to specific cancer-causing mutations and its application to prostate cancer (PCa) in the context of the commonly occurring phosphatase and tensin homolog (PTEN) tumor-suppressor gene inactivation. In the first stage of our approach, we identified 775 N-linked glycoproteins from sera and prostate tissue of wild-type and Pten-null mice. Using label-free quantitative proteomics, we showed that Pten inactivation leads to measurable perturbations in the murine prostate and serum glycoproteome. Following bioinformatic prioritization, in a second stage we applied targeted proteomics to detect and quantify 39 human ortholog candidate biomarkers in the sera of PCa patients and control individuals. The resulting proteomic profiles were analyzed by machine learning to build predictive regression models for tissue PTEN status and diagnosis and grading of PCa. Our approach suggests a general path to rational cancer biomarker discovery and initial validation guided by cancer genetics and based on the integration of experimental mouse models, proteomics-based technologies, and computational modeling.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Próstata/diagnóstico , Proteómica/métodos , Animales , Biología Computacional , Silenciador del Gen , Glicoproteínas/sangre , Humanos , Masculino , Métodos , Ratones , Fosfohidrolasa PTEN/análisis , Fosfohidrolasa PTEN/genética
18.
Endocrinology ; 148(3): 1445-53, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17170096

RESUMEN

Glucocorticoids are steroid hormones with important functions in development, immune regulation, and glucose metabolism. The adrenal glands are the predominant source of glucocorticoids; however, there is increasing evidence for extraadrenal glucocorticoid synthesis in thymus, brain, skin, and vascular endothelium. We recently identified intestinal epithelial cells as an important source of glucocorticoids, which regulate the activation of local intestinal immune cells. The molecular regulation of intestinal glucocorticoid synthesis is currently unexplored. In this study we investigated the transcriptional regulation of the steroidogenic enzymes P450 side-chain cleavage enzyme and 11beta-hydroxylase, and the production of corticosterone in the murine intestinal epithelial cell line mICcl2 and compared it with that in the adrenocortical cell line Y1. Surprisingly, we observed a reciprocal stimulation pattern in these two cell lines. Elevation of intracellular cAMP induced the expression of steroidogenic enzymes in Y1 cells, whereas it inhibited steroidogenesis in mICcl2 cells. In contrast, phorbol ester induced steroidogenic enzymes in intestinal epithelial cells, which was synergistically enhanced upon transfection of cells with the nuclear receptors steroidogenic factor-1 (NR5A1) and liver receptor homolog-1 (NR5A2). Finally, we observed that basal and liver receptor homolog-1/phorbol ester-induced expression of steroidogenic enzymes in mICcl2 cells was inhibited by the antagonistic nuclear receptor small heterodimer partner. We conclude that the molecular basis of glucocorticoid synthesis in intestinal epithelial cells is distinct from that in adrenal cells, most likely representing an adaptation to the local environment and different requirements.


Asunto(s)
Corteza Suprarrenal/citología , Corteza Suprarrenal/metabolismo , Glucocorticoides/biosíntesis , Mucosa Intestinal/metabolismo , Animales , Línea Celular , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , AMP Cíclico/biosíntesis , AMP Cíclico/farmacología , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores Citoplasmáticos y Nucleares/metabolismo , Elementos de Respuesta , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Factor Esteroidogénico 1 , Factores de Transcripción/metabolismo , Transfección
19.
J Exp Med ; 203(9): 2057-62, 2006 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-16923850

RESUMEN

The nuclear receptor liver receptor homologue-1 (LRH-1, NR5A2) is a crucial transcriptional regulator of many metabolic pathways. In addition, LRH-1 is expressed in intestinal crypt cells where it regulates the epithelial cell renewal and contributes to tumorigenesis through the induction of cell cycle proteins. We have recently identified the intestinal epithelium as an important extra-adrenal source of immunoregulatory glucocorticoids. We show here that LRH-1 promotes the expression of the steroidogenic enzymes and the synthesis of corticosterone in murine intestinal epithelial cells in vitro. Interestingly, LRH-1 is also essential for intestinal glucocorticoid synthesis in vivo, as LRH-1 haplo-insufficiency strongly reduces the intestinal expression of steroidogenic enzymes and glucocorticoid synthesis upon immunological stress. These results demonstrate for the first time a novel role for LRH-1 in the regulation of intestinal glucocorticoid synthesis and propose LRH-1 as an important regulator of intestinal tissue integrity and immune homeostasis.


Asunto(s)
Regulación de la Expresión Génica , Glucocorticoides/biosíntesis , Mucosa Intestinal/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Glándulas Suprarrenales/metabolismo , Animales , Línea Celular , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Células Epiteliales/citología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Activación de Linfocitos , Ratones , Regiones Promotoras Genéticas , Receptores Citoplasmáticos y Nucleares/genética , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Linfocitos T/metabolismo
20.
Immunol Lett ; 106(1): 99-102, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16723155

RESUMEN

Glucocorticoids (GCs) are steroidal compounds widely used to treat chronic and acute inflammatory diseases. In particular, GCs at pharmacological doses induce apoptosis of activated and naïve T cells, inhibit their proliferation and block pro-inflammatory cytokine secretion. At physiological concentrations, the effect of these steroids on T cell immunity are not yet fully understood, and various studies reported paradoxical roles exerted by GCs on T cell immunity. Here, we show that GCs surprisingly induce proliferation of activated CD4(+) T cells in the presence of IL-7, a cytokine secreted in the thymus and at mucosal sites. Increased proliferation is dependent on a GC-mediated survival of mitotic cells. Moreover, we observe a downmodulation of Th1 cytokine secretion in cells treated with GCs, an outcome which is not affected by the presence of IL-7. GCs exert thus a positive role in the presence of IL-7 by enhancing proliferation of CD4(+) T cells and simultaneously a negative role by suppressing pro-inflammatory cytokine production.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Glucocorticoides/farmacología , Interleucina-7/farmacología , Activación de Linfocitos/efectos de los fármacos , Animales , Linfocitos T CD4-Positivos/citología , Proliferación Celular , Células Cultivadas , Antagonismo de Drogas , Sinergismo Farmacológico , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA