Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Psychol ; 15: 1396946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091706

RESUMEN

Introduction: The prevailing theories of consciousness consider the integration of different sensory stimuli as a key component for this phenomenon to rise on the brain level. Despite many theories and models have been proposed for multisensory integration between supraliminal stimuli (e.g., the optimal integration model), we do not know if multisensory integration occurs also for subliminal stimuli and what psychophysical mechanisms it follows. Methods: To investigate this, subjects were exposed to visual (Virtual Reality) and/or haptic stimuli (Electro-Cutaneous Stimulation) above or below their perceptual threshold. They had to discriminate, in a two-Alternative Forced Choice Task, the intensity of unimodal and/or bimodal stimuli. They were then asked to discriminate the sensory modality while recording their EEG responses. Results: We found evidence of multisensory integration for supraliminal condition, following the classical optimal model. Importantly, even for subliminal trials participant's performances in the bimodal condition were significantly more accurate when discriminating the intensity of the stimulation. Moreover, significant differences emerged between unimodal and bimodal activity templates in parieto-temporal areas known for their integrative role. Discussion: These converging evidences - even if preliminary and needing confirmation from the collection of further data - suggest that subliminal multimodal stimuli can be integrated, thus filling a meaningful gap in the debate about the relationship between consciousness and multisensory integration.

2.
Med ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39116869

RESUMEN

BACKGROUND: Pain is a complex subjective experience, strongly impacting health and quality of life. Despite many attempts to find effective solutions, present treatments are generic, often unsuccessful, and present significant side effects. Designing individualized therapies requires understanding of multidimensional pain experience, considering physical and emotional aspects. Current clinical pain assessments, relying on subjective one-dimensional numeric self-reports, fail to capture this complexity. METHODS: To this aim, we exploited machine learning to disentangle physiological and psychosocial components shaping the pain experience. Clinical, psychosocial, and physiological data were collected from 118 chronic pain and healthy participants undergoing 40 pain trials (4,697 trials). FINDINGS: To understand the objective response to nociception, we classified pain from the physiological signals (accuracy >0.87), extracting the most important biomarkers. Then, using multilevel mixed-effects models, we predicted the reported pain, quantifying the mismatch between subjective level and measured physiological response. From these models, we introduced two metrics: TIP (subjective index of pain) and Φ (physiological index). These represent possible added value in the clinical process, capturing psychosocial and physiological pain dimensions, respectively. Patients with high TIP are characterized by frequent sick leave from work and increased clinical depression and anxiety, factors associated with long-term disability and poor recovery, and are indicated for alternative treatments, such as psychological ones. By contrast, patients with high Φ show strong nociceptive pain components and could benefit more from pharmacotherapy. CONCLUSIONS: TIP and Φ, explaining the multidimensionality of pain, might provide a new tool potentially leading to targeted treatments, thereby reducing the costs of inefficient generic therapies. FUNDING: RESC-PainSense, SNSF-MOVE-IT197271.

3.
Nat Commun ; 15(1): 6119, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033186

RESUMEN

Bioelectronic therapies modulating the vagus nerve are promising for cardiovascular, inflammatory, and mental disorders. Clinical applications are however limited by side-effects such as breathing obstruction and headache caused by non-specific stimulation. To design selective and functional stimulation, we engineered VaStim, a realistic and efficient in-silico model. We developed a protocol to personalize VaStim in-vivo using simple muscle responses, successfully reproducing experimental observations, by combining models with trials conducted on five pigs. Through optimized algorithms, VaStim simulated the complete fiber population in minutes, including often omitted unmyelinated fibers which constitute 80% of the nerve. The model suggested that all Aα-fibers across the nerve affect laryngeal muscle, while heart rate changes were caused by B-efferents in specific fascicles. It predicted that tripolar paradigms could reduce laryngeal activity by 70% compared to typically used protocols. VaStim may serve as a model for developing neuromodulation therapies by maximizing efficacy and specificity, reducing animal experimentation.


Asunto(s)
Simulación por Computador , Estimulación del Nervio Vago , Nervio Vago , Animales , Porcinos , Nervio Vago/fisiología , Estimulación del Nervio Vago/métodos , Frecuencia Cardíaca/fisiología , Algoritmos
4.
PLoS Comput Biol ; 19(5): e1011184, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37228174

RESUMEN

Peripheral nerve stimulation is being investigated as a therapeutic tool in several clinical scenarios. However, the adopted devices have restricted ability to obtain desired outcomes with tolerable off-target effects. Recent promising solutions are not yet employed in clinical practice due to complex required surgeries, lack of long-term stability, and implant invasiveness. Here, we aimed to design a neural interface to address these issues, specifically dimensioned for pudendal and sacral nerves to potentially target sexual, bladder, or bowel dysfunctions. We designed the adaptable intrafascicular radial electrode (AIR) through realistic computational models. They account for detailed human anatomy, inhomogeneous anisotropic conductance, following the trajectories of axons along curving and branching fascicles, and detailed biophysics of axons. The model was validated against available experimental data. Thanks to computationally efficient geometry-based selectivity estimations we informed the electrode design, optimizing its dimensions to obtain the highest selectivity while maintaining low invasiveness. We then compared the AIR with state-of-the-art electrodes, namely InterStim leads, multipolar cuffs and transversal intrafascicular multichannel electrodes (TIME). AIR, comprising a flexible substrate, surface active sites, and radially inserted intrafascicular needles, is designed to be implanted in a few standard steps, potentially enabling fast implants. It holds potential for repeatable stimulation outcomes thanks to its radial structural symmetry. When compared in-silico, AIR consistently outperformed cuff electrodes and InterStim leads in terms of recruitment threshold and stimulation selectivity. AIR performed similarly or better than a TIME, with quantified less invasiveness. Finally, we showed how AIR can adapt to different nerve sizes and varying shapes while maintaining high selectivity. The AIR electrode shows the potential to fill a clinical need for an effective peripheral nerve interface. Its high predicted performance in all the identified requirements was enabled by a model-based approach, readily applicable for the optimization of electrode parameters in any peripheral nerve stimulation scenario.


Asunto(s)
Axones , Nervios Periféricos , Humanos , Diseño de Equipo , Estimulación Eléctrica/métodos , Electrodos , Nervios Periféricos/fisiología , Axones/fisiología , Electrodos Implantados
5.
iScience ; 26(3): 106248, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36923003

RESUMEN

Peripheral nerve stimulation in amputees achieved the restoration of touch, but not proprioception, which is critical in locomotion. A plausible reason is the lack of means to artificially replicate the complex activity of proprioceptors. To uncover this, we coupled neuromuscular models from ten subjects and nerve histologies from two implanted amputees to develop ProprioStim: a framework to encode proprioception by electrical evoking neural activity in close agreement with natural proprioceptive activity. We demonstrated its feasibility through non-invasive stimulation on seven healthy subjects comparing it with standard linear charge encoding. Results showed that ProprioStim multichannel stimulation was felt more natural, and hold promises for increasing accuracy in knee angle tracking, especially in future implantable solutions. Additionally, we quantified the importance of realistic 3D-nerve models against extruded models previously adopted for further design and validation of novel neurostimulation encoding strategies. ProprioStim provides clear guidelines for the development of neurostimulation policies restoring natural proprioception.

6.
Biomaterials ; 291: 121874, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36334353

RESUMEN

Bioelectronic medicine is a promising venue for treatment of disabilities using implantable neural interfaces. Peripheral neurostimulation of residual nerves recently enabled multiple functional benefits in amputees. Despite the preliminary promising impact on patients' life, the over-time stability of implants and the related nerve reactions are unclear. To unveil the mechanisms and inform the design of better nerve-electrode interfaces, we engaged a multifaceted approach, merging functional responses from patients, their histological data, and corresponding computational modelling. Neurostimulation evoked different selective sensation locations and qualities over-time, with respective perceptual thresholds, that showed different degree of time stabilities dependent from the stimulating active sites. The histological analysis after explant showed mild tissue reactions, while electromechanically active sites and substrates remained conserved. Computational models, based on patients' histology, revealed the direct influence of the simulated tissue reaction to change of thresholds and type of perceived sensations. Novel insights of electrode biocompatibility was observed compared to animals and the increase of thresholds could be predicted computationally. This multifaced framework suggest that future intraneural implants should have easier implantation and higher biocompatibility counteracting the sensations changes through AI-based stimulations and electrode coatings.


Asunto(s)
Amputados , Animales , Humanos , Diseño de Prótesis , Electrodos , Simulación por Computador , Electrodos Implantados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...