Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Cancer ; 154(10): 1842-1856, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38289016

RESUMEN

Triple negative breast cancers (TNBC) are characterized by a poor prognosis and a lack of targeted treatments. Their progression depends on tumor cell intrinsic factors, the tumor microenvironment and host characteristics. Although adipocytes, the primary stromal cells of the breast, have been determined to be plastic in physiology and cancer, the tumor-derived molecular mediators of tumor-adipocyte crosstalk have not been identified yet. In this study, we report that the crosstalk between TNBC cells and adipocytes in vitro beyond adipocyte dedifferentiation, induces a unique transcriptional profile that is characterized by inflammation and pathways that are related to interaction with the tumor microenvironment. Accordingly, increased cancer stem-like features and recruitment of pro-tumorigenic immune cells are induced by this crosstalk through CXCL5 and IL-8 production. We identified serum amyloid A1 (SAA1) as a regulator of the adipocyte reprogramming through CD36 and P2XR7 signaling. In human TNBC, SAA1 expression was associated with cancer-associated adipocyte infiltration, inflammation, stimulated lipolysis, stem-like properties, and a distinct tumor immune microenvironment. Our findings constitute evidence that the interaction between tumor cells and adipocytes through the release of SAA1 is relevant to the aggressiveness of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Transducción de Señal , Células del Estroma/patología , Adipocitos/metabolismo , Inflamación/patología , Microambiente Tumoral , Proteína Amiloide A Sérica/metabolismo
2.
J Thorac Oncol ; 11(5): 718-728, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26804638

RESUMEN

INTRODUCTION: Genetic alterations suitable for targeted therapy are poorly known issues in pulmonary sarcomatoid carcinoma (PSC), an uncommon and life-threatening family of non-small cell lung cancers. METHODS: Ninety-eight PSCs were assessed for MNNG HOS Transforming gene (MET) and anaplastic lymphoma receptor tyrosine kinase gene (ALK) status by fluorescence in situ hybridization (FISH) and for relevant protein expression by immunohistochemical analysis, also taking advantage of phosphorylated (p-) antibodies. Moreover, levels of ALK and MET mRNA were also determined by real-time polymerase chain reaction and Western blot analysis for downstream activation pathways involving p-MET, p-protein kinase B, p-mitogen-activated protein kinase, p-SRC proto-oncogene tyrosine-protein kinase, and p-focal adhesion kinase (p-FAK). RESULTS: MET amplification was detected by FISH in 25 of 98 PSCs (25.6%) and ALK amplification (but not the relevant rearrangement) was found in 16 of 98 (16.3%), with all ALK-amplified tumors also showing MET amplification (p < 0.0001). Nine PSCs, however, showed MET amplification without any ALK gene alteration. ALK protein expression was always lacking, whereas MET and p-MET were confined to the relevant amplified tumors only. Increased levels of ALK and MET mRNA were detectable in tumors with no direct relationship between mRNA content, protein expression, or alterations detected by FISH. Western blot assays showed complete activation of downstream signal pathways up to p-SRC proto-oncogene tyrosine-protein kinase, and p-focal adhesion kinase recruitment in MET and ALK-coamplified tumors only, whereas isolated MET amplification, MET and ALK borderline amplification (5%-10% of tumor cells with ≥15 copies of the relevant gene), or negative tumors showing eusomy or chromosome polysomy were confined to p-mitogen-activated protein kinase, p-protein kinase B, and/or p-MET activation. Multivariate survival analysis pushed a higher percentage of MET altered cells or a higher value of MET copy gain per cell to marginally emerge for overall survival (p = 0.140) and disease-free survival (p = 0.060), respectively. CONCLUSIONS: ALK and MET seemed to act as synergistic, nonrandom coactivators of downstream signal when coamplified in a subset of patients with PSC, thus likely suggesting a combined mechanism of oncogene addiction. These alterations could be a suitable target for therapy based on specific inhibitors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinosarcoma/tratamiento farmacológico , Amplificación de Genes , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/secundario , Adulto , Anciano , Anciano de 80 o más Años , Quinasa de Linfoma Anaplásico , Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/secundario , Carcinosarcoma/genética , Carcinosarcoma/metabolismo , Carcinosarcoma/secundario , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Metástasis Linfática , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Mutación/genética , Invasividad Neoplásica , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Pronóstico , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-met/genética
3.
Cancer Res ; 74(21): 6248-59, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25164009

RESUMEN

A splice isoform of the HER2 receptor that lacks exon 16 (d16HER2) is expressed in many HER2-positive breast tumors, where it has been linked with resistance to the HER2-targeting antibody trastuzumab, but the impact of d16HER2 on tumor pathobiology and therapeutic response remains uncertain. Here, we provide genetic evidence in transgenic mice that expression of d16HER2 is sufficient to accelerate mammary tumorigenesis and improve the response to trastuzumab. A comparative analysis of effector signaling pathways activated by d16HER2 and wild-type HER2 revealed that d16HER2 was optimally functional through a link to SRC activation (pSRC). Clinically, HER2-positive breast cancers from patients who received trastuzumab exhibited a positive correlation in d16HER2 and pSRC abundance, consistent with the mouse genetic results. Moreover, patients expressing high pSRC or an activated "d16HER2 metagene" were found to derive the greatest benefit from trastuzumab treatment. Overall, our results establish the d16HER2 signaling axis as a signature for decreased risk of relapse after trastuzumab treatment.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Isoformas de Proteínas/genética , Receptor ErbB-2/genética , Familia-src Quinasas/genética , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Exones/genética , Femenino , Humanos , Ratones , Ratones Transgénicos , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Multimerización de Proteína/genética , Transducción de Señal/genética , Trastuzumab
4.
J Cell Physiol ; 227(2): 658-67, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21465472

RESUMEN

Exosomes are endosome-derived nanovesicles actively released into the extracellular environment and biological fluids, both under physiological and pathological conditions, by different cell types. We characterized exosomes constitutively secreted by HER2-overexpressing breast carcinoma cell lines and analyzed in vitro and in vivo their potential role in interfering with the therapeutic activity of the humanized antibody Trastuzumab and the dual tyrosine kinase inhibitor (TKI) Lapatinib anti-HER2 biodrugs. We show that exosomes released by the HER2-overexpressing tumor cell lines SKBR3 and BT474 express a full-length HER2 molecule that is also activated, although to a lesser extent than in the originating cells. Release of these exosomes was significantly modulated by the growth factors EGF and heregulin, two of the known HER2 receptor-activating ligands and naturally present in the surrounding tumor microenvironment. Exosomes secreted either in HER2-positive tumor cell-conditioned supernatants or in breast cancer patients' serum bound to Trastuzumab. Functional assays revealed that both xenogeneic and autologous HER2-positive nanovesicles, but not HER2-negative ones, inhibited Trastuzumab activity on SKBR3 cell proliferation. By contrast, Lapatinib activity on SKBR3 cell proliferation was unaffected by the presence of autologous exosomes. Together, these findings point to the role of HER2-positive exosomes in modulating sensitivity to Trastuzumab, and, consequently, to HER2-driven tumor aggressiveness.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/fisiología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Exosomas/metabolismo , Femenino , Humanos , Invasividad Neoplásica , Receptor ErbB-2/genética , Trastuzumab
5.
PLoS One ; 6(4): e18727, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21559085

RESUMEN

Several transgenic mice models solidly support the hypothesis that HER2 (ERBB2) overexpression or mutation promotes tumorigenesis. Recently, a HER2 splice variant lacking exon-16 (Δ16HER2) has been detected in human breast carcinomas. This alternative protein, a normal byproduct of HER2, has an increased transforming potency compared to wild-type (wt) HER2 receptors. To examine the ability of Δ16HER2 to transform mammary epithelium in vivo and to monitor Δ16HER2-driven tumorigenesis in live mice, we generated and characterized a mouse line that transgenically expresses both human Δ16HER2 and firefly luciferase under the transcriptional control of the MMTV promoter. All the transgenic females developed multifocal mammary tumors with a rapid onset and an average latency of 15.11 weeks. Immunohistochemical analysis revealed the concurrent expression of luciferase and the human Δ16HER2 oncogene only in the mammary gland and in strict correlation with tumor development. Transgenic Δ16HER2 expressed on the tumor cell plasma membrane from spontaneous mammary adenocarcinomas formed constitutively active homodimers able to activate the oncogenic signal transduction pathway mediated through Src kinase. These new transgenic animals demonstrate the ability of the human Δ16HER2 isoform to transform "per se" mammary epithelium in vivo. The high tumor incidence as well as the short latency strongly suggests that the Δ16HER2 splice variant represents the transforming form of the HER2 oncoprotein.


Asunto(s)
Empalme Alternativo , Mutación , Regiones Promotoras Genéticas , Receptor ErbB-2/genética , Animales , Línea Celular Tumoral , Dimerización , Disulfuros , Femenino , Genes Reporteros , Humanos , Neoplasias Mamarias Animales , Ratones , Ratones Transgénicos , Oncogenes , Isoformas de Proteínas
6.
J Cell Physiol ; 225(1): 256-65, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20506359

RESUMEN

The question of the serum HER2 extracellular domain (HER2/ECD) measurement for prediction of response to the anti-HER2 antibody Trastuzumab is still an open and current matter of clinical debate. To elucidate the involvement of shed HER2/ECD in HER2-driven tumor progression and in guiding therapy of individual patients, we examined biological effects exerted by elevated HER2/ECD in cancer growth and in response to Trastuzumab. To this purpose SKOV3 tumor cells were stably transfected to release a recombinant HER2/ECD molecule (rECD). Transfectants releasing high levels of 110-kDa rECD, identical in size to native HER2/ECD (nECD), grew significantly slower than did controls, which constitutively released only basal levels of nECD. While transmembrane HER2 and HER1 were expressed at equal levels by both controls and transfected cells, activation of these molecules and of downstream ERK2 and Akt was significantly reduced only in rECD transfectants. Surface plasmon resonance analysis revealed heterodimerization of the rECD with HER1, -2, and -3. In cell growth bioassays in vitro, shed HER2 significantly blocked HER2-driven tumor cell proliferation. In mice, high levels of circulating rECD significantly impaired HER2-driven SKOV3 tumor growth but not that of HER2-negative tumor cells. In vitro and in mice, Trastuzumab significantly inhibited tumor growth due to the rECD-facilitated accumulation of the antibody on tumor cells. Globally our findings sustain the biological relevance of elevated HER2/ECD levels in the outcome of HER2-disease and in the susceptibility to Trastuzumab-based therapy.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Animales , Anticuerpos Monoclonales Humanizados , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Desnudos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Receptor ErbB-2/genética , Transducción de Señal/fisiología , Trastuzumab
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA