Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(3): 254-269, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-37930228

RESUMEN

CACNA1S-related myopathy, due to pathogenic variants in the CACNA1S gene, is a recently described congenital muscle disease. Disease associated variants result in loss of gene expression and/or reduction of Cav1.1 protein stability. There is an incomplete understanding of the underlying disease pathomechanisms and no effective therapies are currently available. A barrier to the study of this myopathy is the lack of a suitable animal model that phenocopies key aspects of the disease. To address this barrier, we generated knockouts of the two zebrafish CACNA1S paralogs, cacna1sa and cacna1sb. Double knockout fish exhibit severe weakness and early death, and are characterized by the absence of Cav1.1 α1 subunit expression, abnormal triad structure, and impaired excitation-contraction coupling, thus mirroring the severe form of human CACNA1S-related myopathy. A double mutant (cacna1sa homozygous, cacna1sb heterozygote) exhibits normal development, but displays reduced body size, abnormal facial structure, and cores on muscle pathologic examination, thus phenocopying the mild form of human CACNA1S-related myopathy. In summary, we generated and characterized the first cacna1s zebrafish loss-of-function mutants, and show them to be faithful models of severe and mild forms of human CACNA1S-related myopathy suitable for future mechanistic studies and therapy development.


Asunto(s)
Canales de Calcio Tipo L , Enfermedades Musculares , Proteínas de Pez Cebra , Pez Cebra , Animales , Humanos , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/patología , Mutación , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
2.
Sci Adv ; 9(40): eadi8317, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37792934

RESUMEN

Several genetically encoded sensors have been developed to study live cell NADPH/NADP+ dynamics, but their use has been predominantly in vitro. Here, we developed an in vivo assay using the Apollo-NADP+ sensor and microfluidic devices to measure endogenous NADPH/NADP+ dynamics in the pancreatic ß cells of live zebrafish embryos. Flux through the pentose phosphate pathway, the main source of NADPH in many cell types, has been reported to be low in ß cells. Thus, it is unclear how these cells compensate to meet NADPH demands. Using our assay, we show that pyruvate cycling is the main source of NADP+ reduction in ß cells, with contributions from folate cycling after acute electrical activation. INS1E ß cells also showed a stress-induced increase in folate cycling and further suggested that this cycling requires both increased glycolytic intermediates and cytosolic NAD+. Overall, we show in vivo application of the Apollo-NADP+ sensor and reveal that ß cells are capable of adapting NADPH/NADP+ redox during stress.


Asunto(s)
Células Secretoras de Insulina , Animales , NADP/metabolismo , Pez Cebra/metabolismo , Oxidación-Reducción , Ácido Fólico/metabolismo
3.
Dis Model Mech ; 16(10)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37675454

RESUMEN

Biliary atresia is a fibroinflammatory neonatal disease with no effective therapies. A subset of cases (10-20%) is associated with laterality defects - labeled biliary atresia splenic malformation (BASM) syndrome. Recently, whole-exome sequencing of patients with BASM identified deleterious variants in PKD1L1. PKD1L1 is involved in left-right axis determination; however, its role in cholangiocytes is unknown. We generated the pkd1l1hsc117 allele using CRISPR/Cas9 mutagenesis in zebrafish to determine the role of Pkd1l1 in biliary development and function. Wild-type and mutant larvae were assessed for laterality defects, biliary function and biliary tree architecture at 5 days post fertilization. pkd1l1hsc117 mutant larvae exhibited early left-right patterning defects. The gallbladder was positioned on the left in 47% of mutants compared to 4% of wild-type larvae. Accumulation of PED6 in the gallbladder, an indicator of hepatobiliary function, was significantly reduced in pkd1l1hsc117 mutants (46%) compared to wild-type larvae (4%). pkd1l1hsc117 larvae exhibited fewer biliary epithelial cells and reduced density of the intrahepatic biliary network compared to those in wild-type larvae. These data highlight the essential role of pkd1l1 in normal development and function of the zebrafish biliary system, supporting a role for this gene as a cause of BASM.


Asunto(s)
Anomalías Múltiples , Atresia Biliar , Sistema Biliar , Pez Cebra , Animales , Proteínas de la Membrana/genética , Bazo , Pez Cebra/genética
4.
Hum Mol Genet ; 32(19): 2913-2928, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37462524

RESUMEN

Human vertebral malformations (VMs) have an estimated incidence of 1/2000 and are associated with significant health problems including congenital scoliosis (CS) and recurrent organ system malformation syndromes such as VACTERL (vertebral anomalies; anal abnormalities; cardiac abnormalities; tracheo-esophageal fistula; renal anomalies; limb anomalies). The genetic cause for the vast majority of VMs are unknown. In a CS/VM patient cohort, three COL11A2 variants (R130W, R1407L and R1413H) were identified in two patients with cervical VM. A third patient with a T9 hemivertebra and the R130W variant was identified from a separate study. These substitutions are predicted to be damaging to protein function, and R130 and R1407 residues are conserved in zebrafish Col11a2. To determine the role for COL11A2 in vertebral development, CRISPR/Cas9 was used to create a nonsense mutation (col11a2L642*) as well as a full gene locus deletion (col11a2del) in zebrafish. Both col11a2L642*/L642* and col11a2del/del mutant zebrafish exhibit vertebral fusions in the caudal spine, which form due to mineralization across intervertebral segments. To determine the functional consequence of VM-associated variants, we assayed their ability to suppress col11a2del VM phenotypes following transgenic expression within the developing spine. While wildtype col11a2 expression suppresses fusions in col11a2del/+ and col11a2del/del backgrounds, patient missense variant-bearing col11a2 failed to rescue the loss-of-function phenotype in these animals. These results highlight an essential role for COL11A2 in vertebral development and support a pathogenic role for two missense variants in CS.


Asunto(s)
Anomalías Múltiples , Escoliosis , Animales , Humanos , Escoliosis/genética , Pez Cebra/genética , Columna Vertebral/anomalías , Anomalías Múltiples/genética , Mutación Missense , Colágeno Tipo XI/genética
5.
Nat Commun ; 13(1): 5598, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151137

RESUMEN

Tissue-wide coordination of polarized cytoskeletal organization and cell behaviour, critical for normal development, is controlled by asymmetric membrane localization of non-canonical Wnt/planar cell polarity (PCP) signalling components. Understanding the dynamic regulation of PCP thus requires visualization of these polarity proteins in vivo. Here we utilize CRISPR/Cas9 genome editing to introduce a fluorescent reporter onto the core PCP component, Vangl2, in zebrafish. Through live imaging of endogenous sfGFP-Vangl2 expression, we report on the authentic regulation of vertebrate PCP during embryogenesis. Furthermore, we couple sfGFP-Vangl2 with conditional zGrad GFP-nanobody degradation methodologies to interrogate tissue-specific functions for PCP. Remarkably, loss of Vangl2 in foxj1a-positive cell lineages causes ependymal cell cilia and Reissner fiber formation defects as well as idiopathic-like scoliosis. Together, our studies provide crucial insights into the establishment and maintenance of vertebrate PCP and create a powerful experimental paradigm for investigating post-embryonic and tissue-specific functions for Vangl2 in development and disease.


Asunto(s)
Polaridad Celular , Pez Cebra , Animales , Polaridad Celular/genética , Desarrollo Embrionario/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
iScience ; 25(9): 105028, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36105588

RESUMEN

Idiopathic scoliosis (IS) refers to abnormal spinal curvatures that occur in the absence of vertebral or neuromuscular defects. IS accounts for 80% of human spinal deformity, afflicts ∼3% of children worldwide, yet pathogenic mechanisms are poorly understood. A key role for cerebrospinal fluid (CSF) homeostasis in zebrafish spine development has been identified. Specifically, defects in cilia motility of brain ependymal cells (EC), CSF flow, and/or Reissner fiber (RF) assembly are observed to induce neuroinflammation, oxidative stress, abnormal CSF-contacting neuron activity, and urotensin peptide expression, all associating with scoliosis. However, the functional relevance of these observations to IS remains unclear. Here we characterize zebrafish katnb1 mutants as a new IS model. We define essential roles for Katnb1 in motile ciliated lineages, uncouple EC cilia and RF formation defects from spinal curvature, and identify abnormal CSF flow and cell stress responses as shared pathogenic signatures associated with scoliosis across diverse zebrafish models.

7.
Sci Adv ; 6(35): eabb4591, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32923640

RESUMEN

Human genome-wide association studies have linked single-nucleotide polymorphisms (SNPs) in NEMP1 (nuclear envelope membrane protein 1) with early menopause; however, it is unclear whether NEMP1 has any role in fertility. We show that whole-animal loss of NEMP1 homologs in Drosophila, Caenorhabditis elegans, zebrafish, and mice leads to sterility or early loss of fertility. Loss of Nemp leads to nuclear shaping defects, most prominently in the germ line. Biochemical, biophysical, and genetic studies reveal that NEMP proteins support the mechanical stiffness of the germline nuclear envelope via formation of a NEMP-EMERIN complex. These data indicate that the germline nuclear envelope has specialized mechanical properties and that NEMP proteins play essential and conserved roles in fertility.

8.
Curr Biol ; 30(12): 2363-2373.e6, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32386528

RESUMEN

Adolescent idiopathic scoliosis (AIS) affects 3% to 4% of children between the ages of 11 and 18 [1, 2]. This disorder, characterized by abnormal three-dimensional spinal curvatures that typically develop during periods of rapid growth, occurs in the absence of congenital vertebral malformations or neuromuscular defects [1]. Genetic heterogeneity [3] and a historical lack of appropriate animal models [4] have confounded basic understanding of AIS biology; thus, treatment options remain limited [5, 6]. Recently, genetic studies using zebrafish have linked idiopathic-like scoliosis to irregularities in motile cilia-mediated cerebrospinal fluid flow [7-9]. However, because loss of cilia motility in human primary ciliary dyskinesia patients is not fully associated with scoliosis [10, 11], other pathogenic mechanisms remain to be determined. Here, we demonstrate that zebrafish scospondin (sspo) mutants develop late-onset idiopathic-like spinal curvatures in the absence of obvious cilia motility defects. Sspo is a large secreted glycoprotein functionally associated with the subcommissural organ and Reissner's fiber [12]-ancient and enigmatic organs of the brain ventricular system reported to govern cerebrospinal fluid homeostasis [13, 14], neurogenesis [12, 15-18], and embryonic morphogenesis [19]. We demonstrate that irregular deposition of Sspo within brain ventricles is associated with idiopathic-like scoliosis across diverse genetic models. Furthermore, Sspo defects are sufficient to induce oxidative stress and neuroinflammatory responses implicated in AIS pathogenesis [9]. Through screening for chemical suppressors of sspo mutant phenotypes, we also identify potent agents capable of blocking severe juvenile spine deformity. Our work thus defines a new preclinical model of AIS and provides tools to realize novel therapeutic strategies.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Ventrículos Cerebrales/metabolismo , Inflamación/fisiopatología , Morfogénesis , Médula Espinal/inmunología , Columna Vertebral/crecimiento & desarrollo , Pez Cebra/anomalías , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Modelos Animales de Enfermedad , Humanos , Médula Espinal/anomalías , Médula Espinal/crecimiento & desarrollo , Columna Vertebral/anomalías , Pez Cebra/crecimiento & desarrollo
9.
PLoS Genet ; 14(11): e1007817, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30475797

RESUMEN

Cerebrospinal fluid flow is crucial for neurodevelopment and homeostasis of the ventricular system of the brain, with localized flow being established by the polarized beating of the ependymal cell (EC) cilia. Here, we report a homozygous one base-pair deletion, c.1193delT (p.Leu398Glnfs*2), in the Kinesin Family Member 6 (KIF6) gene in a child displaying neurodevelopmental defects and intellectual disability. To test the pathogenicity of this novel human KIF6 mutation we engineered an analogous C-terminal truncating mutation in mouse. These mutant mice display severe, postnatal-onset hydrocephalus. We generated a Kif6-LacZ transgenic mouse strain and report expression specifically and uniquely within the ependymal cells (ECs) of the brain, without labeling other multiciliated mouse tissues. Analysis of Kif6 mutant mice with scanning electron microscopy (SEM) and immunofluorescence (IF) revealed specific defects in the formation of EC cilia, without obvious effect of cilia of other multiciliated tissues. Dilation of the ventricular system and defects in the formation of EC cilia were also observed in adult kif6 mutant zebrafish. Finally, we report Kif6-GFP localization at the axoneme and basal bodies of multi-ciliated cells (MCCs) of the mucociliary Xenopus epidermis. Overall, this work describes the first clinically-defined KIF6 homozygous null mutation in human and defines KIF6 as a conserved mediator of neurological development with a specific role for EC ciliogenesis in vertebrates.


Asunto(s)
Epéndimo/anomalías , Cinesinas/genética , Mutación , Trastornos del Neurodesarrollo/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Niño , Cilios/metabolismo , Cilios/patología , Consanguinidad , Epéndimo/metabolismo , Femenino , Expresión Génica , Homocigoto , Humanos , Hidrocefalia/genética , Discapacidad Intelectual/genética , Cinesinas/deficiencia , Cinesinas/metabolismo , Cinesinas/fisiología , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología , Linaje , Eliminación de Secuencia , Distribución Tisular , Xenopus laevis , Pez Cebra
10.
Artículo en Inglés | MEDLINE | ID: mdl-28304136

RESUMEN

Planar cell polarity (PCP) coordinates the uniform orientation, structure and movement of cells within the plane of a tissue or organ system. It is beautifully illustrated in the polarized arrangement of bristles and hairs that project from specialized cell surfaces of the insect abdomen and wings, and pioneering genetic studies using the fruit fly, Drosophila melanogaster, have defined a core signalling network underlying PCP. This core PCP/non-canonical Wnt signalling pathway is evolutionarily conserved, and studies in zebrafish have helped transform our understanding of PCP from a peculiarity of polarized epithelia to a more universal cellular property that orchestrates a diverse suite of polarized cell behaviors that are required for normal vertebrate development. Furthermore, application of powerful genetics, embryonic cell-transplantation, and live-imaging capabilities afforded by the zebrafish model have yielded novel insights into the establishment and maintenance of vertebrate PCP, over the course of complex and dynamic morphogenetic events like gastrulation and neural tube morphogenesis. Although key questions regarding vertebrate PCP remain, with the emergence of new genome-editing technologies and the promise of endogenous labeling and Cre/LoxP conditional targeting strategies, zebrafish remains poised to deliver fundamental new insights into the function and molecular dynamic regulation of PCP signalling from embryonic development through to late-onset phenotypes and adult disease states. WIREs Dev Biol 2017, 6:e267. doi: 10.1002/wdev.267 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Polaridad Celular/fisiología , Morfogénesis/fisiología , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Modelos Animales , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
11.
Trends Genet ; 33(3): 183-196, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28174019

RESUMEN

Idiopathic scoliosis (IS) refers to a 3D rotation of the spine that occurs in the absence of underlying vertebral anomalies or obvious physiological defects. Despite affecting approximately 4% of the population, the etiology and pathogenesis of IS remain poorly understood, largely due to genetic heterogeneity and historical lack of appropriate developmental models. Recently, zebrafish has emerged as a powerful system for studying IS, owing to well-developed genetic resources and a natural susceptibility to spinal curvatures. Here, we summarize the utility of zebrafish as a genetic and biological model of IS, examine current faithful mutant IS models, and focus on their recent advances towards understanding core mechanisms governing both normal spine morphogenesis and the pathogenesis of IS-like spinal deformities.


Asunto(s)
Escoliosis/genética , Columna Vertebral/fisiopatología , Pez Cebra/genética , Animales , Modelos Animales de Enfermedad , Humanos , Mutación , Escoliosis/fisiopatología
12.
Zebrafish ; 13 Suppl 1: S153-63, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27248438

RESUMEN

The zebrafish model system is helping researchers improve the health and welfare of people and animals and has become indispensable for advancing biomedical research. As genetic engineering is both resource intensive and time-consuming, sharing successfully developed genetically modified zebrafish lines throughout the international community is critical to research efficiency and to maximizing the millions of dollars in research funding. New restrictions on importation of zebrafish into Canada based on putative susceptibility to infection by the spring viremia of carp virus (SVCV) have been imposed on the scientific community. In this commentary, we review the disease profile of SVCV in fish, discuss the findings of the Canadian government's scientific assessment, how the interpretations of their assessment differ from that of the Canadian research community, and describe the negative impact of these regulations on the Canadian research community and public as it pertains to protecting the health of Canadians.


Asunto(s)
Comercio/legislación & jurisprudencia , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/transmisión , Regulación Gubernamental , Infecciones por Rhabdoviridae/veterinaria , Pez Cebra , Animales , Canadá , Enfermedades de los Peces/virología , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/prevención & control , Infecciones por Rhabdoviridae/transmisión , Infecciones por Rhabdoviridae/virología
13.
Nat Cell Biol ; 17(5): 569-79, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25893915

RESUMEN

The physical forces that drive morphogenesis are not well characterized in vivo, especially among vertebrates. In the early limb bud, dorsal and ventral ectoderm converge to form the apical ectodermal ridge (AER), although the underlying mechanisms are unclear. By live imaging mouse embryos, we show that prospective AER progenitors intercalate at the dorsoventral boundary and that ectoderm remodels by concomitant cell division and neighbour exchange. Mesodermal expansion and ectodermal tension together generate a dorsoventrally biased stress pattern that orients ectodermal remodelling. Polarized distribution of cortical actin reflects this stress pattern in a ß-catenin- and Fgfr2-dependent manner. Intercalation of AER progenitors generates a tensile gradient that reorients resolution of multicellular rosettes on adjacent surfaces, a process facilitated by ß-catenin-dependent attachment of cortex to membrane. Therefore, feedback between tissue stress pattern and cell intercalations remodels mammalian ectoderm.


Asunto(s)
Ectodermo/fisiología , Esbozos de los Miembros/fisiología , Mecanotransducción Celular , Actinas/metabolismo , Animales , Anisotropía , Comunicación Celular , División Celular , Polaridad Celular , Ectodermo/metabolismo , Técnicas de Cultivo de Embriones , Células Madre Embrionarias/fisiología , Retroalimentación , Regulación del Desarrollo de la Expresión Génica , Genotipo , Esbozos de los Miembros/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía por Video , Modelos Biológicos , Morfogénesis , Fenotipo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Estrés Mecánico , Factores de Tiempo , beta Catenina/genética , beta Catenina/metabolismo
14.
Nat Commun ; 6: 6751, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25849195

RESUMEN

A key step in generating planar cell polarity (PCP) is the formation of restricted junctional domains containing Frizzled/Dishevelled/Diego (Fz/Dsh/Dgo) or Van Gogh/Prickle (Vang/Pk) complexes within the same cell, stabilized via Flamingo (Fmi) across cell membranes. Although models have been proposed for how these complexes acquire and maintain their polarized localization, the machinery involved in moving core PCP proteins around cells remains unknown. We describe the AP-1 adaptor complex and Arf1 as major regulators of PCP protein trafficking in vivo. AP-1 and Arf1 disruption affects the accumulation of Fz/Fmi and Vang/Fmi complexes in the proximo-distal axis, producing severe PCP phenotypes. Using novel tools, we demonstrate a direct and specific Arf1 involvement in Fz trafficking in vivo. Moreover, we uncover a conserved Arf1 PCP function in vertebrates. Our data support a model whereby the trafficking machinery plays an important part during PCP establishment, promoting formation of polarized PCP-core complexes in vivo.


Asunto(s)
Factor 1 de Ribosilacion-ADP/genética , Complejo 1 de Proteína Adaptadora/genética , Polaridad Celular/genética , Proteínas de Drosophila/genética , Drosophila/embriología , Alas de Animales/embriología , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Modificados Genéticamente , Cadherinas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Dishevelled , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Receptores Frizzled/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas con Dominio LIM/metabolismo , Proteínas de la Membrana/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Fosfoproteínas/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
15.
Nat Commun ; 5: 4777, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25182715

RESUMEN

Scoliosis is a complex genetic disorder of the musculoskeletal system, characterized by three-dimensional rotation of the spine. Curvatures caused by malformed vertebrae (congenital scoliosis (CS)) are apparent at birth. Spinal curvatures with no underlying vertebral abnormality (idiopathic scoliosis (IS)) most commonly manifest during adolescence. The genetic and biological mechanisms responsible for IS remain poorly understood due largely to limited experimental models. Here we describe zygotic ptk7 (Zptk7) mutant zebrafish, deficient in a critical regulator of Wnt signalling, as the first genetically defined developmental model of IS. We identify a novel sequence variant within a single IS patient that disrupts PTK7 function, consistent with a role for dysregulated Wnt activity in disease pathogenesis. Furthermore, we demonstrate that embryonic loss-of-gene function in maternal-zygotic ptk7 mutants (MZptk7) leads to vertebral anomalies associated with CS. Our data suggest novel molecular origins of, and genetic links between, congenital and idiopathic forms of disease.


Asunto(s)
Moléculas de Adhesión Celular/genética , Modelos Animales de Enfermedad , Proteínas Tirosina Quinasas Receptoras/genética , Escoliosis/genética , Pez Cebra/genética , Adolescente , Animales , Moléculas de Adhesión Celular/metabolismo , Embrión no Mamífero , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Patrón de Herencia , Masculino , Mutación , Proteínas Tirosina Quinasas Receptoras/metabolismo , Escoliosis/congénito , Escoliosis/metabolismo , Escoliosis/patología , Transducción de Señal , Columna Vertebral/crecimiento & desarrollo , Columna Vertebral/metabolismo , Columna Vertebral/patología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra
16.
Dev Biol ; 387(2): 154-66, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24462977

RESUMEN

Growth factors and morphogens regulate embryonic patterning, cell fate specification, cell migration, and morphogenesis. The activity and behavior of these signaling molecules are regulated in the extracellular space through interactions with proteoglycans (Bernfield et al., 1999; Perrimon and Bernfield 2000; Lander and Selleck 2000; Selleck 2000). Proteoglycans are high molecular-weight proteins consisting of a core protein with covalently linked glycosaminoglycan (GAG) side chains, which are thought to mediate ligand interaction. Drosophila mutant embryos deficient for UDP-glucose dehydrogenase activity (Ugdh, required for GAG synthesis) exhibit abnormal Fgf, Wnt and TGFß signaling and die during gastrulation, indicating a broad and critical role for proteoglycans during early embryonic development (Lin et al., 1999; Lin and Perrimon 2000) (Hacker et al., 1997). Mouse Ugdh mutants also die at gastrulation, however, only Fgf signaling appears disrupted (Garcia-Garcia and Anderson, 2003). These findings suggested a possible divergence in the requirement for proteoglycans during Drosophila and mouse embryogenesis, and that mammals may have evolved alternative means of regulating Wnt and TGFß activity. To further examine the function of proteoglycans in vertebrate development, we have characterized zebrafish mutants devoid of both maternal and zygotic Ugdh/Jekyll activity (MZjekyll). We demonstrate that MZjekyll mutant embryos display abnormal Fgf, Shh, and Wnt signaling activities, with concomitant defects in central nervous system patterning, cardiac ventricular fate specification and axial morphogenesis. Furthermore, we uncover a novel role for proteoglycans in left-right pattern formation. Our findings resolve longstanding questions into the evolutionary conservation of Ugdh function and provide new mechanistic insights into the initiation of left-right asymmetry.


Asunto(s)
Tipificación del Cuerpo/genética , Desarrollo Embrionario/genética , Proteoglicanos de Heparán Sulfato/metabolismo , Síndrome de Heterotaxia/genética , Proteoglicanos/metabolismo , Uridina Difosfato Glucosa Deshidrogenasa/genética , Cigoto , Animales , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Glicosaminoglicanos/metabolismo , Proteínas Hedgehog/metabolismo , Proteoglicanos de Heparán Sulfato/genética , Ratones , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
17.
Cell Rep ; 5(1): 37-43, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24095732

RESUMEN

The role for cilia in establishing planar cell polarity (PCP) is contentious. Although knockdown of genes known to function in ciliogenesis has been reported to cause PCP-related morphogenesis defects in zebrafish, genetic mutations affecting intraflagellar transport (IFT) do not show PCP phenotypes despite the requirement for IFT in cilia formation. This discrepancy has been attributed to off-target effects of antisense morpholino oligonucleotide (MO) injection, confounding maternal effects in zygotic mutant embryos, or an inability to distinguish between cilia-dependent versus cilia-independent protein functions. To determine the role of cilia in PCP, we generated maternal + zygotic IFT88 (MZift88) mutant zebrafish embryos, which never form cilia. We clearly demonstrate that cilia are not required to establish PCP. Rather, IFT88 plays a cilia-independent role in controlling oriented cell divisions at gastrulation and neurulation. Our results have important implications for the interpretation of cilia gene function in normal development and in disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Cilios/fisiología , Desarrollo Embrionario/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , División Celular/fisiología , Polaridad Celular/fisiología , Femenino , Masculino
18.
Development ; 140(13): 2835-46, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23757414

RESUMEN

Advances in imaging and cell-labeling techniques have greatly enhanced our understanding of developmental and neurobiological processes. Among vertebrates, zebrafish is uniquely suited for in vivo imaging owing to its small size and optical translucency. However, distinguishing and following cells over extended time periods remains difficult. Previous studies have demonstrated that Cre recombinase-mediated recombination can lead to combinatorial expression of spectrally distinct fluorescent proteins (RFP, YFP and CFP) in neighboring cells, creating a 'Brainbow' of colors. The random combination of fluorescent proteins provides a way to distinguish adjacent cells, visualize cellular interactions and perform lineage analyses. Here, we describe Zebrabow (Zebrafish Brainbow) tools for in vivo multicolor imaging in zebrafish. First, we show that the broadly expressed ubi:Zebrabow line provides diverse color profiles that can be optimized by modulating Cre activity. Second, we find that colors are inherited equally among daughter cells and remain stable throughout embryonic and larval stages. Third, we show that UAS:Zebrabow lines can be used in combination with Gal4 to generate broad or tissue-specific expression patterns and facilitate tracing of axonal processes. Fourth, we demonstrate that Zebrabow can be used for long-term lineage analysis. Using the cornea as a model system, we provide evidence that embryonic corneal epithelial clones are replaced by large, wedge-shaped clones formed by centripetal expansion of cells from the peripheral cornea. The Zebrabow tool set presented here provides a resource for next-generation color-based anatomical and lineage analyses in zebrafish.


Asunto(s)
Pez Cebra/embriología , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/metabolismo , Linaje de la Célula , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/genética , Integrasas/metabolismo , Pez Cebra/metabolismo
19.
Development ; 140(8): 1807-18, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23533179

RESUMEN

Using zebrafish, we have characterised the function of Protein tyrosine kinase 7 (Ptk7), a transmembrane pseudokinase implicated in Wnt signal transduction during embryonic development and in cancer. Ptk7 is a known regulator of mammalian neural tube closure and Xenopus convergent extension movement. However, conflicting reports have indicated both positive and negative roles for Ptk7 in canonical Wnt/ß-catenin signalling. To clarify the function of Ptk7 in vertebrate embryonic patterning and morphogenesis, we generated maternal-zygotic (MZ) ptk7 mutant zebrafish using a zinc-finger nuclease (ZFN) gene targeting approach. Early loss of zebrafish Ptk7 leads to defects in axial convergence and extension, neural tube morphogenesis and loss of planar cell polarity (PCP). Furthermore, during late gastrula and segmentation stages, we observe significant upregulation of ß-catenin target gene expression and demonstrate a clear role for Ptk7 in attenuating canonical Wnt/ß-catenin activity in vivo. MZptk7 mutants display expanded differentiation of paraxial mesoderm within the tailbud, suggesting an important role for Ptk7 in regulating canonical Wnt-dependent fate specification within posterior stem cell pools post-gastrulation. Furthermore, we demonstrate that a plasma membrane-tethered Ptk7 extracellular fragment is sufficient to rescue both PCP morphogenesis and Wnt/ß-catenin patterning defects in MZptk7 mutant embryos. Our results indicate that the extracellular domain of Ptk7 acts as an important regulator of both non-canonical Wnt/PCP and canonical Wnt/ß-catenin signalling in multiple vertebrate developmental contexts, with important implications for the upregulated PTK7 expression observed in human cancers.


Asunto(s)
Diferenciación Celular/fisiología , Morfogénesis/fisiología , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Vía de Señalización Wnt/fisiología , Pez Cebra/embriología , beta Catenina/metabolismo , Animales , Polaridad Celular/fisiología , Cartilla de ADN/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Marcación de Gen , Células HEK293 , Humanos , Hibridación in Situ , Microscopía Confocal , Mutagénesis , Tubo Neural/embriología , Proteínas Tirosina Quinasas Receptoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Pez Cebra
20.
PLoS Genet ; 8(8): e1002849, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22876193

RESUMEN

Since the beginnings of domestication, the craniofacial architecture of the domestic dog has morphed and radiated to human whims. By beginning to define the genetic underpinnings of breed skull shapes, we can elucidate mechanisms of morphological diversification while presenting a framework for understanding human cephalic disorders. Using intrabreed association mapping with museum specimen measurements, we show that skull shape is regulated by at least five quantitative trait loci (QTLs). Our detailed analysis using whole-genome sequencing uncovers a missense mutation in BMP3. Validation studies in zebrafish show that Bmp3 function in cranial development is ancient. Our study reveals the causal variant for a canine QTL contributing to a major morphologic trait.


Asunto(s)
Proteína Morfogenética Ósea 3/genética , Craneosinostosis/genética , Perros/genética , Variación Genética , Sitios de Carácter Cuantitativo , Cráneo/metabolismo , Animales , Evolución Biológica , Cruzamiento , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Mutación Missense , Mascotas , Fenotipo , Cráneo/anatomía & histología , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA