Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Europace ; 23(11): 1847-1859, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34080619

RESUMEN

AIMS: Pharmacological termination of atrial fibrillation (AF) remains a challenge due to limited efficacy and potential ventricular proarrhythmic effects of antiarrhythmic drugs. SK channels are proposed as atrial-specific targets in the treatment of AF. Here, we investigated the effects of the new SK channel inhibitor AP14145. METHODS AND RESULTS: Eight goats were implanted with pericardial electrodes for induction of AF (30 days). In an open-chest study, the atrial conduction velocity (CV) and effective refractory period (ERP) were measured during pacing. High-density mapping of both atrial free-walls was performed during AF and conduction properties were assessed. All measurements were performed at baseline and during AP14145 infusion [10 mg/kg/h (n = 1) or 20 mg/kg/h (n = 6)]. At an infusion rate of 20 mg/kg/h, AF terminated in five of six goats. AP14145 profoundly increased ERP and reduced CV during pacing. AP14145 increased spatiotemporal instability of conduction at short pacing cycle lengths. Atrial fibrillation cycle length and pathlength (AF cycle length × CV) underwent a strong dose-dependent prolongation. Conduction velocity during AF remained unchanged and conduction patterns remained complex until the last seconds before AF termination, during which a sudden and profound organization of fibrillatory conduction occurred. CONCLUSION: AP14145 provided a successful therapy for termination of persistent AF in goats. During AF, AP14145 caused an ERP and AF cycle length prolongation. AP14145 slowed CV during fast pacing but did not lead to a further decrease during AF. Termination of AF was preceded by an abrupt organization of AF with a decline in the number of fibrillation waves.


Asunto(s)
Fibrilación Atrial , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/tratamiento farmacológico , Atrios Cardíacos , Humanos
2.
Front Pharmacol ; 11: 556, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32435191

RESUMEN

BACKGROUND: Inhibition of KCa2 channels, conducting IKCa, can convert atrial fibrillation (AF) to sinus rhythm and protect against its induction. IKCa inhibition has been shown to possess functional atrial selectivity with minor effects on ventricles. Under pathophysiological conditions with ventricular remodeling, however, inhibiting IKCa can exhibit both proarrhythmic and antiarrhythmic ventricular effects. The aim of this study was to evaluate the effects of the IKCa inhibitor AP14145, when given before or after the IKr blocker dofetilide, on cardiac function and ventricular proarrhythmia markers in pigs with or without left ventricular dysfunction (LVD). METHODS: Landrace pigs were randomized into an AF group (n = 6) and two control groups: SHAM1 (n = 8) and SHAM2 (n = 4). AF pigs were atrially tachypaced (A-TP) for 43 ± 4 days until sustained AF and LVD developed. A-TP and SHAM1 pigs received 20 mg/kg AP14145 followed by 100 µg/kg dofetilide whereas SHAM2 pigs received the same drugs in the opposite order. Proarrhythmic markers such as short-term variability of QT (STVQT) and RR (STVRR) intervals, and the number of premature ventricular complexes (PVCs) were measured at baseline and after administration of drugs. The influence on cardiac function was assessed by measuring cardiac output, stroke volume, and relevant echocardiographic parameters. RESULTS: IKCa inhibition by AP14145 did not increase STVQT or STVRR in any of the pigs. IKr inhibition by dofetilide markedly increased STVQT in the A-TP pigs, but not in SHAM operated pigs. Upon infusion of AP14145 the number of PVCs decreased or remained unchanged both when AP14145 was infused after baseline and after dofetilide. Conversely, the number of PVCs increased or remained unchanged upon dofetilide infusion. Neither AP14145 nor dofetilide affected relevant echocardiographic parameters, cardiac output, or stroke volume in any of the groups. CONCLUSION: IKCa inhibition with AP14145 was not proarrhythmic in healthy pigs, or in the presence of LVD resulting from A-TP. In pigs already challenged with 100 µg/kg dofetilide there were no signs of proarrhythmia when 20 mg/kg AP14145 were infused. KCa2 channel inhibition did not affect cardiac function, implying that KCa2 inhibitors can be administered safely also in the presence of LV dysfunction.

3.
Front Vet Sci ; 7: 179, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32328502

RESUMEN

Background: Atrial fibrillation (AF) is characterized by electrical and structural remodeling. Irregular and/or fast atrio-ventricular (AV) conduction during AF can result in AV dyssynchrony, tachymyopathy, pressure and volume overload with subsequent dilatation, valve regurgitation, and ventricular dysfunction with progression to heart failure. Objective: To gain further insight into the myocardial pathophysiological changes induced by right atrial tachypacing (A-TP) in a large animal model. Methods: A total of 28 Landrace pigs were randomized as 14 into AF-induced A-TP group and 14 pigs to control group. AF pigs were tachypaced for 43 ± 4 days until in sustained AF. Functional remodeling was investigated by echocardiography (after cardioversion to sinus rhythm). Structural remodeling was quantified by histological preparations with picrosirius red and immunohistochemical stainings. Results: A-TP resulted in decreased left ventricular ejection fraction (LVEF) accompanied by increased end-diastolic and end-systolic left atrium (LA) volume and area. In addition, A-TP was associated with mitral valve (MV) regurgitation, diastolic dysfunction and increased atrial and ventricular fibrotic extracellular matrix (ECM). Conclusions: A-TP induced AF with concomitant LV systolic and diastolic dysfunction, increased LA volume and area, and atrial and ventricular fibrosis.

4.
Artículo en Inglés | MEDLINE | ID: mdl-29018164

RESUMEN

BACKGROUND: Evidence has emerged that small-conductance Ca2+-activated K+ (SK) channels constitute a new target for treatment of atrial fibrillation (AF). SK channels are predominantly expressed in the atria as compared with the ventricles. Various marketed antiarrhythmic drugs are limited by ventricular adverse effects and efficacy loss as AF progresses. METHODS AND RESULTS: A total of 43 pigs were used for the studies. AF reversion in conscious long-term tachypaced pigs: Pigs were subjected to atrial tachypacing (7 Hz) until they developed sustained AF that could not be reverted by vernakalant 4 mg/kg (18.8±3.3 days of atrial tachypacing). When the SK channel inhibitor AP14145 was tested in these animals, vernakalant-resistant AF was reverted to sinus rhythm, and reinduction of AF by burst pacing (50 Hz) was prevented in 8 of 8 pigs. Effects on refractory period and AF duration in open chest pigs: The effects of AP14145 and vernakalant on the effective refractory periods and acute burst pacing-induced AF were examined in anaesthetized open chest pigs. Both vernakalant and AP14145 significantly prolonged atrial refractoriness and reduced AF duration without affecting the ventricular refractoriness or blood pressure in pigs subjected to 7 days atrial tachypacing, as well as in sham-operated control pigs. CONCLUSIONS: SK currents play a role in porcine atrial repolarization, and pharmacological inhibition of these with AP14145 demonstrates antiarrhythmic effects in a vernakalant-resistant porcine model of AF. These results suggest SK channel blockers as potentially interesting anti-AF drugs.


Asunto(s)
Anisoles/farmacología , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/fisiopatología , Pirrolidinas/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Acetamidas , Animales , Estimulación Cardíaca Artificial , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Técnicas de Placa-Clamp , Periodo Refractario Electrofisiológico , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA