Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 9(3): 698-711, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38443575

RESUMEN

Cell division in all domains of life requires the orchestration of many proteins, but in Archaea most of the machinery remains poorly characterized. Here we investigate the FtsZ-based cell division mechanism in Haloferax volcanii and find proteins containing photosynthetic reaction centre (PRC) barrel domains that play an essential role in archaeal cell division. We rename these proteins cell division protein B 1 (CdpB1) and CdpB2. Depletions and deletions in their respective genes cause severe cell division defects, generating drastically enlarged cells. Fluorescence microscopy of tagged FtsZ1, FtsZ2 and SepF in CdpB1 and CdpB2 mutant strains revealed an unusually disordered divisome that is not organized into a distinct ring-like structure. Biochemical analysis shows that SepF forms a tripartite complex with CdpB1/2 and crystal structures suggest that these two proteins might form filaments, possibly aligning SepF and the FtsZ2 ring during cell division. Overall our results indicate that PRC-domain proteins play essential roles in FtsZ-based cell division in Archaea.


Asunto(s)
Haloferax volcanii , Proteínas del Complejo del Centro de Reacción Fotosintética , División Celular , Citoesqueleto , Haloferax volcanii/genética , Microscopía Fluorescente
2.
Nat Microbiol ; 7(10): 1686-1701, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36123441

RESUMEN

During bacterial cell division, filaments of tubulin-like FtsZ form the Z-ring, which is the cytoplasmic scaffold for divisome assembly. In Escherichia coli, the actin homologue FtsA anchors the Z-ring to the membrane and recruits divisome components, including bitopic FtsN. FtsN regulates the periplasmic peptidoglycan synthase FtsWI. To characterize how FtsA regulates FtsN, we applied electron microscopy to show that E. coli FtsA forms antiparallel double filaments on lipid monolayers when bound to the cytoplasmic tail of FtsN. Using X-ray crystallography, we demonstrate that Vibrio maritimus FtsA crystallizes as an equivalent double filament. We identified an FtsA-FtsN interaction site in the IA-IC interdomain cleft of FtsA using X-ray crystallography and confirmed that FtsA forms double filaments in vivo by site-specific cysteine cross-linking. FtsA-FtsN double filaments reconstituted in or on liposomes prefer negative Gaussian curvature, like those of MreB, the actin-like protein of the elongasome. We propose that curved antiparallel FtsA double filaments together with treadmilling FtsZ filaments organize septal peptidoglycan synthesis in the division plane.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Actinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cisteína/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lípidos , Liposomas , Proteínas de la Membrana/metabolismo , Peptidoglicano/metabolismo , Tubulina (Proteína)/metabolismo
3.
Structure ; 30(2): 215-228.e5, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34800371

RESUMEN

Surface layers (S-layers) are proteinaceous crystalline coats that constitute the outermost component of most prokaryotic cell envelopes. In this study, we have investigated the role of metal ions in the formation of the Caulobacter crescentus S-layer using high-resolution structural and cell biology techniques, as well as molecular simulations. Utilizing optical microscopy of fluorescently tagged S-layers, we show that calcium ions facilitate S-layer lattice formation and cell-surface binding. We report all-atom molecular dynamics simulations of the S-layer lattice, revealing the importance of bound metal ions. Finally, using electron cryomicroscopy and long-wavelength X-ray diffraction experiments, we mapped the positions of metal ions in the S-layer at near-atomic resolution, supporting our insights from the cellular and simulations data. Our findings contribute to the understanding of how C. crescentus cells form a regularly arranged S-layer on their surface, with implications on fundamental S-layer biology and the synthetic biology of self-assembling biomaterials.


Asunto(s)
Calcio/metabolismo , Caulobacter crescentus/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Caulobacter crescentus/química , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Iones/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Difracción de Rayos X
4.
Cell ; 180(2): 348-358.e15, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31883796

RESUMEN

Most bacterial and all archaeal cells are encapsulated by a paracrystalline, protective, and cell-shape-determining proteinaceous surface layer (S-layer). On Gram-negative bacteria, S-layers are anchored to cells via lipopolysaccharide. Here, we report an electron cryomicroscopy structure of the Caulobacter crescentus S-layer bound to the O-antigen of lipopolysaccharide. Using native mass spectrometry and molecular dynamics simulations, we deduce the length of the O-antigen on cells and show how lipopolysaccharide binding and S-layer assembly is regulated by calcium. Finally, we present a near-atomic resolution in situ structure of the complete S-layer using cellular electron cryotomography, showing S-layer arrangement at the tip of the O-antigen. A complete atomic structure of the S-layer shows the power of cellular tomography for in situ structural biology and sheds light on a very abundant class of self-assembling molecules with important roles in prokaryotic physiology with marked potential for synthetic biology and surface-display applications.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/ultraestructura , Caulobacter crescentus/metabolismo , Glicoproteínas de Membrana/ultraestructura , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Caulobacter crescentus/ultraestructura , Microscopía por Crioelectrón/métodos , Lipopolisacáridos/metabolismo , Glicoproteínas de Membrana/metabolismo , Tomografía/métodos
5.
Nat Microbiol ; 4(12): 2357-2368, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31501539

RESUMEN

Bactofilins are small ß-helical proteins that form cytoskeletal filaments in a range of bacteria. Bactofilins have diverse functions, from cell stalk formation in Caulobacter crescentus to chromosome segregation and motility in Myxococcus xanthus. However, the precise molecular architecture of bactofilin filaments has remained unclear. Here, sequence analysis and electron microscopy results reveal that, in addition to being widely distributed across bacteria and archaea, bactofilins are also present in a few eukaryotic lineages such as the Oomycetes. Electron cryomicroscopy analysis demonstrated that the sole bactofilin from Thermus thermophilus (TtBac) forms constitutive filaments that polymerize through end-to-end association of the ß-helical domains. Using a nanobody, we determined the near-atomic filament structure, showing that the filaments are non-polar. A polymerization-impairing mutation enabled crystallization and structure determination, while reaffirming the lack of polarity and the strength of the ß-stacking interface. To confirm the generality of the lack of polarity, we performed coevolutionary analysis on a large set of sequences. Finally, we determined that the widely conserved N-terminal disordered tail of TtBac is responsible for direct binding to lipid membranes, both on liposomes and in Escherichia coli cells. Membrane binding is probably a common feature of these widespread but only recently discovered filaments of the prokaryotic cytoskeleton.


Asunto(s)
Archaea/citología , Bacterias/citología , Citoesqueleto/química , Citoesqueleto/ultraestructura , Secuencia de Aminoácidos , Archaea/química , Bacterias/química , Proteínas Bacterianas/química , Caulobacter crescentus/química , Caulobacter crescentus/citología , Segregación Cromosómica , Microscopía por Crioelectrón , Proteínas del Citoesqueleto/química , Escherichia coli , Liposomas , Membranas , Modelos Moleculares , Myxococcus xanthus , Análisis de Secuencia
6.
mBio ; 9(5)2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30206170

RESUMEN

Most bacteria and archaea use the tubulin homologue FtsZ as its central organizer of cell division. In Gram-negative Escherichia coli bacteria, FtsZ recruits cytosolic, transmembrane, periplasmic, and outer membrane proteins, assembling the divisome that facilitates bacterial cell division. One such divisome component, FtsQ, a bitopic membrane protein with a globular domain in the periplasm, has been shown to interact with many other divisome proteins. Despite its otherwise unknown function, it has been shown to be a major divisome interaction hub. Here, we investigated the interactions of FtsQ with FtsB and FtsL, two small bitopic membrane proteins that act immediately downstream of FtsQ. We show in biochemical assays that the periplasmic domains of E. coli FtsB and FtsL interact with FtsQ, but not with each other. Our crystal structure of FtsB bound to the ß domain of FtsQ shows that only residues 64 to 87 of FtsB interact with FtsQ. A synthetic peptide comprising those 24 FtsB residues recapitulates the FtsQ-FtsB interactions. Protein deletions and structure-guided mutant analyses validate the structure. Furthermore, the same structure-guided mutants show cell division defects in vivo that are consistent with our structure of the FtsQ-FtsB complex that shows their interactions as they occur during cell division. Our work provides intricate details of the interactions within the divisome and also provides a tantalizing view of a highly conserved protein interaction in the periplasm of bacteria that is an excellent target for cell division inhibitor searches.IMPORTANCE In most bacteria and archaea, filaments of FtsZ protein organize cell division. FtsZ forms a ring structure at the division site and starts the recruitment of 10 to 20 downstream proteins that together form a multiprotein complex termed the divisome. The divisome is thought to facilitate many of the steps required to make two cells out of one. FtsQ and FtsB are part of the divisome, with FtsQ being a central hub, interacting with most of the other divisome components. Here we show for the first time in detail how FtsQ interacts with its downstream partner FtsB and show that mutations that disturb the interface between the two proteins effectively inhibit cell division.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , División Celular , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Ciclo Celular/genética , Cristalografía por Rayos X , Análisis Mutacional de ADN , Proteínas de Escherichia coli/genética , Eliminación de Gen , Proteínas de la Membrana/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas
7.
Proc Natl Acad Sci U S A ; 114(29): E5950-E5958, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28673988

RESUMEN

Microtubules, the dynamic, yet stiff hollow tubes built from αß-tubulin protein heterodimers, are thought to be present only in eukaryotic cells. Here, we report a 3.6-Å helical reconstruction electron cryomicroscopy structure of four-stranded mini microtubules formed by bacterial tubulin-like Prosthecobacter dejongeii BtubAB proteins. Despite their much smaller diameter, mini microtubules share many key structural features with eukaryotic microtubules, such as an M-loop, alternating subunits, and a seam that breaks overall helical symmetry. Using in vitro total internal reflection fluorescence microscopy, we show that bacterial mini microtubules treadmill and display dynamic instability, another hallmark of eukaryotic microtubules. The third protein in the btub gene cluster, BtubC, previously known as "bacterial kinesin light chain," binds along protofilaments every 8 nm, inhibits BtubAB mini microtubule catastrophe, and increases rescue. Our work reveals that some bacteria contain regulated and dynamic cytomotive microtubule systems that were once thought to be only useful in much larger and sophisticated eukaryotic cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Verrucomicrobia/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente , Microtúbulos/química , Verrucomicrobia/citología , Verrucomicrobia/metabolismo
8.
mBio ; 8(3)2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28465423

RESUMEN

Bacterial cell division in many organisms involves a constricting cytokinetic ring that is orchestrated by the tubulin-like protein FtsZ. FtsZ forms dynamic filaments close to the membrane at the site of division that have recently been shown to treadmill around the division ring, guiding septal wall synthesis. Here, using X-ray crystallography of Staphylococcus aureus FtsZ (SaFtsZ), we reveal how an FtsZ can adopt two functionally distinct conformations, open and closed. The open form is found in SaFtsZ filaments formed in crystals and also in soluble filaments of Escherichia coli FtsZ as deduced by electron cryomicroscopy. The closed form is found within several crystal forms of two nonpolymerizing SaFtsZ mutants and corresponds to many previous FtsZ structures from other organisms. We argue that FtsZ's conformational switch is polymerization-associated, driven by the formation of the longitudinal intersubunit interfaces along the filament. We show that such a switch provides explanations for both how treadmilling may occur within a single-stranded filament and why filament assembly is cooperative.IMPORTANCE The FtsZ protein is a key molecule during bacterial cell division. FtsZ forms filaments that organize cell membrane constriction, as well as remodeling of the cell wall, to divide cells. FtsZ functions through nucleotide-driven filament dynamics that are poorly understood at the molecular level. In particular, mechanisms for cooperative assembly (nonlinear dependency on concentration) and treadmilling (preferential growth at one filament end and loss at the other) have remained elusive. Here, we show that most likely all FtsZ proteins have two distinct conformations, a "closed" form in monomeric FtsZ and an "open" form in filaments. The conformational switch that occurs upon polymerization explains cooperativity and, in concert with polymerization-dependent nucleotide hydrolysis, efficient treadmilling of FtsZ polymers.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Staphylococcus aureus/metabolismo , División Celular , Microscopía por Crioelectrón , Cristalografía por Rayos X , Citoesqueleto/química , Escherichia coli/metabolismo , Mutación , Polimerizacion , Conformación Proteica , Staphylococcus aureus/química , Staphylococcus aureus/genética
9.
Nat Microbiol ; 2: 17059, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28418382

RESUMEN

Many prokaryotic cells are encapsulated by a surface layer (S-layer) consisting of repeating units of S-layer proteins. S-layer proteins are a diverse class of molecules found in Gram-positive and Gram-negative bacteria and most archaea1-5. S-layers protect cells from the outside, provide mechanical stability and also play roles in pathogenicity. In situ structural information about this highly abundant class of proteins is scarce, so atomic details of how S-layers are arranged on the surface of cells have remained elusive. Here, using purified Caulobacter crescentus' sole S-layer protein RsaA, we obtained a 2.7 Å X-ray structure that shows the hexameric S-layer lattice. We also solved a 7.4 Šstructure of the S-layer through electron cryotomography and sub-tomogram averaging of cell stalks. The X-ray structure was docked unambiguously into the electron cryotomography map, resulting in a pseudo-atomic-level description of the in vivo S-layer, which agrees completely with the atomic X-ray lattice model. The cellular S-layer atomic structure shows that the S-layer is porous, with a largest gap dimension of 27 Å, and is stabilized by multiple Ca2+ ions bound near the interfaces. This study spans different spatial scales from atoms to cells by combining X-ray crystallography with electron cryotomography and sub-nanometre-resolution sub-tomogram averaging.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Caulobacter crescentus/química , Glicoproteínas de Membrana/química , Proteínas Bacterianas/química , Cristalografía por Rayos X , Tomografía con Microscopio Electrónico , Glicoproteínas de Membrana/aislamiento & purificación , Glicoproteínas de Membrana/ultraestructura , Propiedades de Superficie
10.
Elife ; 52016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27852434

RESUMEN

The similarity of eukaryotic actin to crenactin, a filament-forming protein from the crenarchaeon Pyrobaculum calidifontis supports the theory of a common origin of Crenarchaea and Eukaryotes. Monomeric structures of crenactin and actin are similar, although their filament architectures were suggested to be different. Here we report that crenactin forms bona fide double helical filaments that show exceptional similarity to eukaryotic F-actin. With cryo-electron microscopy and helical reconstruction we solved the structure of the crenactin filament to 3.8 Å resolution. When forming double filaments, the 'hydrophobic plug' loop in crenactin rearranges. Arcadin-2, also encoded by the arcade gene cluster, binds tightly with its C-terminus to the hydrophobic groove of crenactin. Binding is reminiscent of eukaryotic actin modulators such as cofilin and thymosin ß4 and arcadin-2 is a depolymeriser of crenactin filaments. Our work further supports the theory of shared ancestry of Eukaryotes and Crenarchaea.


Asunto(s)
Citoesqueleto de Actina/química , Factores Despolimerizantes de la Actina/química , Actinas/química , Proteínas Bacterianas/genética , Proteínas de Microfilamentos/genética , Citoesqueleto de Actina/ultraestructura , Factores Despolimerizantes de la Actina/ultraestructura , Actinas/ultraestructura , Microscopía por Crioelectrón , Citoesqueleto/química , Citoesqueleto/ultraestructura , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/ultraestructura , Conformación Proteica , Estructura Secundaria de Proteína , Pyrobaculum/química
11.
FEBS Lett ; 589(24 Pt B): 3822-8, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26619764

RESUMEN

Bacterial cell division involves a contractile ring that organises downstream proteins at the division site and which contains the tubulin homologue FtsZ. ZapC has been discovered as a non-essential regulator of FtsZ. It localises to the septal ring and deletion of zapC leads to a mild phenotype, while overexpression inhibits cell division. Interference with cell division is facilitated by an interaction with FtsZ. Here, we present the 2.9 Å crystal structure of ZapC from Escherichia coli. ZapC forms a dimer and comprises two domains that belong to the Royal superfamily of which many members bind methylated arginines or lysines. ZapC contains an N-terminal chromo-like domain and a Tudor-like C-terminal domain. We show by ITC that ZapC binds the C-terminal tail of FtsZ.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
12.
FEBS Lett ; 588(5): 776-82, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24486010

RESUMEN

Polymerising proteins of the actin family are nearly ubiquitous. Crenactins, restricted to Crenarchaea, are more closely related to actin than bacterial MreB. Crenactins occur in gene clusters hinting at an unknown, but conserved function. We solved the crystal structure of crenactin at 3.2 Å resolution. The protein crystallises as a continuous right-handed helix with 8 subunits per complete turn, spanning 419 Å. The structure of crenactin shows several loops that are longer than in actin, but overall, crenactin is closely related to eukaryotic actin, with an RMSD of 1.6 Å. Crenactin filaments imaged by electron microscopy showed polymers with very similar helical parameters.


Asunto(s)
Actinas/química , Proteínas Arqueales/química , Pyrobaculum , Actinas/ultraestructura , Proteínas Arqueales/ultraestructura , Cristalografía por Rayos X , Modelos Moleculares , Polimerizacion , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína
13.
Proc Natl Acad Sci U S A ; 110(17): E1584-93, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23569239

RESUMEN

Nuclear pore complexes (NPCs) mediate the exchange of macromolecules between the cytoplasm and the nucleoplasm. Soluble nuclear transport receptors bind signal-dependent cargos to form transport complexes that diffuse through the NPC and are then disassembled. Although transport receptors enable the NPC's permeability barrier to be overcome, directionality is established by complex assembly and disassembly. Here, we delineate the choreography of importin-α/CAS complex assembly and disassembly in permeabilized cells, using single-molecule fluorescence resonance energy transfer and particle tracking. Monitoring interaction sequences in intact NPCs ensures spatiotemporal preservation of structures and interactions critical for activity in vivo. We show that key interactions between components are reversible, multiple outcomes are often possible, and the assembly and disassembly of complexes are precisely controlled to occur at the appropriate place and time. Importin-α mutants that impair interactions during nuclear import were used together with cytoplasmic Ran GTPase-activating factors to demonstrate that importin-α/CAS complexes form in the nuclear basket region, at the termination of protein import, and disassembly of importin-α/CAS complexes after export occurs in the cytoplasmic filament region of the NPC. Mathematical models derived from our data emphasize the intimate connection between transport and the coordinated assembly and disassembly of importin-α/CAS complexes for generating productive transport cycles.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Proteína de Susceptibilidad a Apoptosis Celular/metabolismo , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Poro Nuclear/metabolismo , alfa Carioferinas/metabolismo , Electroforesis en Gel de Poliacrilamida , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes , Unión Proteica
14.
J Biol Chem ; 286(33): 29325-29335, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21708948

RESUMEN

The toroid-shaped nuclear protein export factor CRM1 is constructed from 21 tandem HEAT repeats, each of which contains an inner (B) and outer (A) α-helix joined by loops. Proteins targeted for export have a nuclear export signal (NES) that binds between the A-helices of HEAT repeats 11 and 12 on the outer surface of CRM1. RanGTP binding increases the affinity of CRM1 for NESs. In the absence of RanGTP, the CRM1 C-terminal helix, together with the HEAT repeat 9 loop, modulates its affinity for NESs. Here we show that there is an electrostatic interaction between acidic residues at the extreme distal tip of the C-terminal helix and basic residues on the HEAT repeat 12 B-helix that lies on the inner surface of CRM1 beneath the NES binding site. Small angle x-ray scattering indicates that the increased affinity for NESs generated by mutations in the C-terminal helix is not associated with large scale changes in CRM1 conformation, consistent with the modulation of NES affinity being mediated by a local change in CRM1 near the NES binding site. These data also suggest that in the absence of RanGTP, the C-terminal helix lies across the CRM1 toroid in a position similar to that seen in the CRM1-Snurportin crystal structure. By creating local changes that stabilize the NES binding site in its closed conformation and thereby reducing the affinity of CRM1 for NESs, the C-terminal helix and HEAT 9 loop facilitate release of NES-containing cargo in the cytoplasm and also inhibit their return to the nucleus.


Asunto(s)
Carioferinas/química , Receptores Citoplasmáticos y Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Transporte Activo de Núcleo Celular/fisiología , Sitios de Unión , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cristalografía por Rayos X , Carioferinas/genética , Carioferinas/metabolismo , Mutación Missense , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Electricidad Estática , Proteína Exportina 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...