RESUMEN
The current study aimed to shed more light on the role of dopamine in temporal attention. To this end, we pharmacologically manipulated dopamine levels in a large sample of Parkinson's disease patients (n=63) while they performed an attentional blink (AB) task in which they had to identify two targets (T1 and T2) presented in close temporal proximity among distractors. We specifically examined 1) differences in the magnitude of the AB between unmedicated Parkinson patients, who have depleted levels of striatal dopamine, and healthy controls, and 2) effects of two dopaminergic medications (l-DOPA and dopamine agonists) on the AB in the Parkinson patients at the group level and as a function of individual baseline performance. In line with the notion that relatively low levels of striatal dopamine may impair target detection in general, Parkinson patients OFF medications displayed overall poor target perception compared to healthy controls. Moreover, as predicted, effects of dopaminergic medication on AB performance critically depended on individual baseline AB size, although this effect was only observed for l-DOPA. l-DOPA generally decreased the size of the AB in patients with a large baseline AB (i.e., OFF medications), while l-DOPA generally increased the AB in patients with a small baseline AB. These findings may support a role for dopamine in the AB and temporal attention, more generally and corroborate the notion that there is an optimum dopamine level for cognitive function. They also emphasize the need for more studies that examine the separate effects of DA agonists and l-DOPA on cognitive functioning.
Asunto(s)
Antiparasitarios/uso terapéutico , Atención/efectos de los fármacos , Parpadeo Atencional/efectos de los fármacos , Dopamina/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/fisiopatología , Anciano , Análisis de Varianza , Antiparasitarios/farmacología , Atención/fisiología , Estudios de Casos y Controles , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/etiología , Dopaminérgicos/farmacología , Dopaminérgicos/uso terapéutico , Femenino , Humanos , Individualidad , Masculino , Persona de Mediana EdadRESUMEN
The inhibition of impulsive response tendencies that conflict with goal-directed action is a key component of executive control. An emerging literature reveals that the proficiency of inhibitory control is modulated by expected or unexpected opportunities to earn reward or avoid punishment. However, less is known about how inhibitory control is impacted by the processing of task-irrelevant stimulus information that has been associated previously with particular outcomes (reward or punishment) or response tendencies (action or inaction). We hypothesized that stimulus features associated with particular action-valence tendencies, even though task irrelevant, would modulate inhibitory control processes. Participants first learned associations between stimulus features (color), actions, and outcomes using an action-valence learning task that orthogonalizes action (action, inaction) and valence (reward, punishment). Next, these stimulus features were embedded in a Simon task as a task-irrelevant stimulus attribute. We analyzed the effects of action-valence associations on the Simon task by means of distributional analysis to reveal the temporal dynamics. Learning patterns replicated previously reported biases; inherent, Pavlovian-like mappings (action-reward, inaction-punishment avoidance) were easier to learn than mappings conflicting with these biases (action-punishment avoidance, inaction-reward). More importantly, results from two experiments demonstrated that the easier to learn, Pavlovian-like action-valence associations interfered with the proficiency of inhibiting impulsive actions in the Simon task. Processing conflicting associations led to more proficient inhibitory control of impulsive actions, similar to Simon trials without any association. Fast impulsive errors were reduced for trials associated with punishment in comparison to reward trials or trials without any valence association. These findings provide insight into the temporal dynamics of task irrelevant information associated with action and valence modulating cognitive control. We discuss putative mechanisms that might explain these interactions.
Asunto(s)
Aprendizaje por Asociación/fisiología , Cognición/fisiología , Función Ejecutiva/fisiología , Inhibición Psicológica , Tiempo de Reacción/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Castigo , Recompensa , Adulto JovenRESUMEN
The current study investigated the effects of Parkinson's disease (PD) on the ability to resolve conflicts when performance emphasized speed vs. response accuracy. PD patients and healthy controls (HC) completed a Simon task, and a subset of participants provided movement-related potential (MRP) data to investigate motor cortex activation and inhibition associated with conflict resolution. Both groups adjusted performance strategically with speed or accuracy instructions. The groups experienced similar susceptibility to making fast errors in conflict trials, but PD patients were less proficient compared to HC at suppressing incorrect responses, especially under speed pressure. Analysis of MRPs showed attenuated inhibition of the motor cortex controlling the conflicting response in PD patients compared to HC. These results confirm the detrimental effects of PD on inhibitory control mechanisms with speed pressure and also suggest that a downstream effect of inhibitory dysfunction in PD might be due to diminished inhibition of the motor cortex.
Asunto(s)
Conflicto Psicológico , Inhibición Psicológica , Enfermedad de Parkinson/fisiopatología , Tiempo de Reacción/fisiología , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/fisiopatologíaRESUMEN
BACKGROUND: Idiopathic REM sleep behavior disorder (RBD) may be the initial manifestation of synucleinopathies (Parkinson disease [PD], multiple system atrophy [MSA], or dementia with Lewy bodies [DLB]). METHODS: We used the Mayo medical records linkage system to identify cases presenting from 2002 to 2006 meeting the criteria of idiopathic RBD at onset, plus at least 15 years between RBD and development of other neurodegenerative symptoms. All patients underwent evaluations by specialists in sleep medicine to confirm RBD, and behavioral neurology or movement disorders to confirm the subsequent neurodegenerative syndrome. RESULTS: Clinical criteria were met by 27 patients who experienced isolated RBD for at least 15 years before evolving into PD, PD dementia (PDD), DLB, or MSA. The interval between RBD and subsequent neurologic syndrome ranged up to 50 years, with the median interval 25 years. At initial presentation, primary motor symptoms occurred in 13 patients: 9 with PD, 3 with PD and mild cognitive impairment (MCI), and 1 with PDD. Primary cognitive symptoms occurred in 13 patients: 10 with probable DLB and 3 with MCI. One patient presented with primary autonomic symptoms, diagnosed as MSA. At most recent follow-up, 63% of patients progressed to develop dementia (PDD or DLB). Concomitant autonomic dysfunction was confirmed in 74% of all patients. CONCLUSIONS: These cases illustrate that the alpha-synuclein pathogenic process may start decades before the first symptoms of PD, DLB, or MSA. A long-duration preclinical phase has important implications for epidemiologic studies and future interventions designed to slow or halt the neurodegenerative process.