Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 15(9): 1926-1936, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38635928

RESUMEN

The aggregation of α-synuclein (αS) plays a key role in Parkinson's disease (PD) etiology. While the onset of PD is age-related, the cellular quality control system appears to regulate αS aggregation throughout most human life. Intriguingly, the protein 14-3-3τ has been demonstrated to delay αS aggregation and the onset of PD in various models. However, the molecular mechanisms behind this delay remain elusive. Our study confirms the delay in αS aggregation by 14-3-3τ, unveiling a concentration-dependent relation. Utilizing microscale thermophoresis (MST) and single-molecule burst analysis, we quantified the early αS multimers and concluded that these multimers exhibit properties that classify them as nanoscale condensates that form in a cooperative process, preceding the critical nucleus for fibril formation. Significantly, the αS multimer formation mechanism changes dramatically in the presence of scaffold protein 14-3-3τ. Our data modeling suggests that 14-3-3τ modulates the multimerization process, leading to the creation of mixed multimers or co-condensates, comprising both αS and 14-3-3τ. These mixed multimers form in a noncooperative process. They are smaller, more numerous, and distinctively not on the pathway to amyloid formation. Importantly, 14-3-3τ thus acts in the very early stage of αS multimerization, ensuring that αS does not aggregate but remains soluble and functional. This offers long-sought novel entries for the pharmacological modulation of PD.


Asunto(s)
Proteínas 14-3-3 , Amiloide , Multimerización de Proteína , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Proteínas 14-3-3/metabolismo , Humanos , Amiloide/metabolismo , Enfermedad de Parkinson/metabolismo , Agregación Patológica de Proteínas/metabolismo
2.
Nanoscale ; 15(45): 18337-18346, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37921451

RESUMEN

The presence of deposits of alpha-synuclein (αS) fibrils in the cells of the brain is a hallmark of several α-synucleinopathies, including Parkinson's disease. As most disease cases are not familial, it is likely that external factors play a role in the disease onset. One of the external factors that may influence the disease onset is viral infection. It has recently been shown in in vitro assays that in the presence of SARS-Cov-2 N-protein, αS fibril formation is faster and proceeds in an unusual two-step aggregation process. Here, we show that faster fibril formation is not due to the SARS-CoV-2 N-protein-catalysed formation of an aggregation-prone nucleus. Instead, aggregation starts with the formation of a population of mixed αS/N-protein fibrils with low affinity for αS. Mixed amyloid fibrils, composed of two different proteins, have not been observed before. After the depletion of N-protein, fibril formation comes to a halt, until a slow transformation into fibrils with characteristics of a pure αS fibril strain occurs. This transformation into a strain of αS fibrils subsequently results in a second phase of fibril growth until a new equilibrium is reached. We hypothesize that this fibril strain transformation may be of relevance in the cell-to-cell spread of the αS pathology and disease onset.


Asunto(s)
COVID-19 , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/metabolismo , SARS-CoV-2 , Enfermedad de Parkinson/metabolismo , Encéfalo/metabolismo , Amiloide/metabolismo
3.
Biomacromolecules ; 24(8): 3680-3688, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37407505

RESUMEN

Theoretical concepts from polymer physics are often used to describe intrinsically disordered proteins (IDPs). However, amino acid interactions within and between regions of the protein can lead to deviations from typical polymer scaling behavior and even to short-lived secondary structures. To investigate the key interactions in the dynamic IDP α-synuclein (αS) at the amino acid level, we conducted single-molecule fluorescence resonance energy transfer (smFRET) experiments and coarse-grained molecular dynamics (CG-MD) simulations. We find excellent agreement between experiments and simulations. Our results show that a physiological salt solution is a good solvent for αS and that the protein is highly dynamic throughout its entire chain, with local intra- and inter-regional interactions leading to deviations from global scaling. Specifically, we observe expansion in the C-terminal region, compaction in the NAC region, and a slightly smaller distance between the C- and N-termini than expected. Our simulations indicate that the compaction in the NAC region results from hydrophobic aliphatic contacts, mostly between valine and alanine residues, and cation-π interactions between lysine and tyrosine. In addition, hydrogen bonds also seem to contribute to the compaction of the NAC region. The expansion of the C-terminal region is due to intraregional electrostatic repulsion and increased chain stiffness from several prolines. Overall, our study demonstrates the effectiveness of combining smFRET experiments with CG-MD simulations to investigate the key interactions in highly dynamic IDPs at the amino acid level.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , alfa-Sinucleína , alfa-Sinucleína/química , Transferencia Resonante de Energía de Fluorescencia , Simulación de Dinámica Molecular , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Aminoácidos , Conformación Proteica
4.
ACS Omega ; 8(27): 24198-24209, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37457450

RESUMEN

The formation of fibrocartilage during articular cartilage regeneration remains a clinical problem affecting adequate restoration of articular cartilage in joints. To stimulate chondrocytes to form articular cartilage, we investigated the use of amyloid fibril-based scaffolds. The proteins α-synuclein, ß-lactoglobulin, and lysozyme were induced to self-assemble into amyloid fibrils and, during dialysis, formed micrometer scale amyloid networks that resemble the cartilage extracellular matrix. Our results show that lysozyme amyloid micronetworks supported chondrocyte viability and extracellular matrix deposition, while α-synuclein and ß-lactoglobulin maintained cell viability. With this study, we not only confirm the possible use of amyloid materials for tissue regeneration but also demonstrate that the choice of protein, rather than its amyloid-fold per se, affects the cellular response and tissue formation.

5.
J Phys Chem B ; 127(8): 1735-1743, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36795058

RESUMEN

Amyloid fibrils of the protein α-synuclein (αS) have recently been identified as a biomarker for Parkinson's disease (PD). To detect the presence of these amyloid fibrils, seed amplification assays (SAAs) have been developed. SAAs allow for the detection of αS amyloid fibrils in biomatrices such as cerebral spinal fluid and are promising for PD diagnosis by providing a dichotomous (yes/no) response. The additional quantification of the number of αS amyloid fibrils may enable clinicians to evaluate and follow the disease progression and severity. Developing quantitative SAAs has been shown to be challenging. Here, we report on a proof-of-principle study on the quantification of αS fibrils in fibril-spiked model solutions of increasing compositional complexity including blood serum. We show that parameters derived from standard SAAs can be used for fibril quantification in these solutions. However, interactions between the monomeric αS reactant that is used for amplification and biomatrix components such as human serum albumin have to be taken into account. We demonstrate that quantification of fibrils is possible even down to the single fibril level in a model sample consisting of fibril-spiked diluted blood serum.


Asunto(s)
Amiloide , Enfermedad de Parkinson , Humanos , Amiloide/metabolismo , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo
6.
Sci Adv ; 8(48): eabq6495, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459561

RESUMEN

Biomolecular condensates present in cells can fundamentally affect the aggregation of amyloidogenic proteins and play a role in the regulation of this process. While liquid-liquid phase separation of amyloidogenic proteins by themselves can act as an alternative nucleation pathway, interaction of partly disordered aggregation-prone proteins with preexisting condensates that act as localization centers could be a far more general mechanism of altering their aggregation behavior. Here, we show that so-called host biomolecular condensates can both accelerate and slow down amyloid formation. We study the amyloidogenic protein α-synuclein and two truncated α-synuclein variants in the presence of three types of condensates composed of nonaggregating peptides, RNA, or ATP. Our results demonstrate that condensates can markedly speed up amyloid formation when proteins localize to their interface. However, condensates can also significantly suppress aggregation by sequestering and stabilizing amyloidogenic proteins, thereby providing living cells with a possible protection mechanism against amyloid formation.

7.
J Phys Chem B ; 126(40): 7906-7915, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36190918

RESUMEN

Genetically encoded visible fluorescent proteins (VFPs) are a key tool used to visualize cellular processes. However, compared to synthetic fluorophores, VFPs are photophysically complex. This photophysical complexity includes the presence of non-emitting, dark proteins within the ensemble of VFPs. Quantitative fluorescence microcopy approaches that rely on VFPs to obtain molecular insights are hampered by the presence of these dark proteins. To account for the presence of dark proteins, it is necessary to know the fraction of dark proteins (fdark) in the ensemble. To date, fdark has rarely been quantified, and different methods to determine fdark have not been compared. Here, we use and compare two different methods to determine the fdark of four commonly used VFPs: EGFP, SYFP2, mStrawberry, and mRFP1. In the first, direct method, we make use of VFP tandems and single-molecule two-color coincidence detection (TCCD). The second method relies on comparing the bright state fluorescence quantum yield obtained by photonic manipulation to the ensemble-averaged fluorescence quantum yield of the VFP. Our results show that, although very different in nature, both methods are suitable to obtain fdark. Both methods show that all four VFPs contain a considerable fraction of dark proteins. We determine fdark values between 30 and 60% for the different VFPs. The high values for fdark of these commonly used VFPs highlight that fdark has to be accounted for in quantitative microscopy and spectroscopy.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Fotones , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/química , Microscopía Fluorescente/métodos
8.
ACS Appl Polym Mater ; 4(7): 5173-5179, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35846780

RESUMEN

Monitoring the performance of polymer-functionalized surfaces that aim at removing and inactivating viruses is typically labor-intensive and time-consuming. This hampers the development and optimization of such surfaces. Here we present experiments of low complexity that can be used to characterize and quantify the antiviral properties of polymer-functionalized surfaces. We showcase our approach on polyethylenimine (PEI)-coated poly(ether sulfone) (PES) microfiltration membranes. We use a fluorescently labeled model virus to quantify both virus removal and inactivation. We directly quantify the log removal of intact viruses by this membrane using single particle counting. Additionally, we exploit the change in photophysical properties upon disassembly of the virus to show that viruses are inactivated by the PEI coating. Although only a small fraction of intact viruses can pass the membrane, a considerable fraction of inactivated, disassembled viruses are found in the filtrate. Fluorescence microscopy experiments show that most of the viruses left behind on the microfiltration membrane are in the inactivated, disassembled state. Combined, our fluorescence microscopy and spectroscopy experiments show that not only does the model virus adsorb to the PEI coating on the membrane but also the interaction with PEI results in the disassembly of the virus capsid.

9.
ACS Chem Neurosci ; 13(1): 143-150, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34860005

RESUMEN

First cases that point at a correlation between SARS-CoV-2 infections and the development of Parkinson's disease (PD) have been reported. Currently, it is unclear if there is also a direct causal link between these diseases. To obtain first insights into a possible molecular relation between viral infections and the aggregation of α-synuclein protein into amyloid fibrils characteristic for PD, we investigated the effect of the presence of SARS-CoV-2 proteins on α-synuclein aggregation. We show, in test tube experiments, that SARS-CoV-2 spike protein (S-protein) has no effect on α-synuclein aggregation, while SARS-CoV-2 nucleocapsid protein (N-protein) considerably speeds up the aggregation process. We observe the formation of multiprotein complexes and eventually amyloid fibrils. Microinjection of N-protein in SH-SY5Y cells disturbed the α-synuclein proteostasis and increased cell death. Our results point toward direct interactions between the N-protein of SARS-CoV-2 and α-synuclein as molecular basis for the observed correlation between SARS-CoV-2 infections and Parkinsonism.


Asunto(s)
Amiloide , Proteínas de la Nucleocápside de Coronavirus/metabolismo , alfa-Sinucleína , Amiloide/metabolismo , COVID-19 , Humanos , Fosfoproteínas/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , alfa-Sinucleína/metabolismo
10.
Molecules ; 26(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34641294

RESUMEN

Supramolecular protein complexes are the corner stone of biological processes; they are essential for many biological functions. Unraveling the interactions responsible for the (dis)assembly of these complexes is required to understand nature and to exploit such systems in future applications. Virus capsids are well-defined assemblies of hundreds of proteins and form the outer shell of non-enveloped viruses. Due to their potential as a drug carriers or nano-reactors and the need for virus inactivation strategies, assessing the intactness of virus capsids is of great interest. Current methods to evaluate the (dis)assembly of these protein assemblies are experimentally demanding in terms of instrumentation, expertise and time. Here we investigate a new strategy to monitor the disassembly of fluorescently labeled virus capsids. To monitor surfactant-induced capsid disassembly, we exploit the complex photophysical interplay between multiple fluorophores conjugated to capsid proteins. The disassembly of the capsid changes the photophysical interactions between the fluorophores, and this can be spectrally monitored. The presented data show that this low complexity method can be used to study and monitor the disassembly of supramolecular protein complexes like virus capsids. However, the range of labeling densities that is suitable for this assay is surprisingly narrow.


Asunto(s)
Cápside/química , Colorantes Fluorescentes/química , Tensoactivos/efectos adversos , Cápside/efectos de los fármacos , Proteínas de la Cápside/química , Proteínas de la Cápside/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Conformación Proteica , Inactivación de Virus
11.
Langmuir ; 37(24): 7349-7355, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34097425

RESUMEN

Hydrogels of amyloid fibrils are a versatile biomaterial for tissue engineering and other biomedical applications. Their suitability for these applications has been partly ascribed to their excellent and potentially engineerable rheological properties. However, while in biomedical applications the gels have to function in compositionally complex physiological solutions, their rheological behavior is typically only characterized in simple buffers. Here we show that the viscoelastic response of networks of amyloid fibrils of the protein lysozyme in biologically relevant solutions substantially differs from the response in simple buffers. We observe enhanced energy dissipation in both cell culture medium and synovial fluid. We attribute this energy dissipation to interactions of the amyloid fibrils with other molecules in these solutions and especially to the adsorption of the abundantly present protein serum albumin. This finding provides the basis for a better understanding of the performance of amyloid hydrogels in biomedical applications.


Asunto(s)
Amiloide , Muramidasa , Adsorción , Materiales Biocompatibles , Hidrogeles
12.
J Biol Chem ; 296: 100358, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33539920

RESUMEN

The aggregation of the protein α-synuclein (aSyn) into amyloid fibrils in the human brain is associated with the development of several neurodegenerative diseases, including Parkinson's disease. The previously observed prion-like spreading of aSyn aggregation throughout the brain and the finding that heterologous cross-seeding of amyloid aggregation occurs in vitro for some proteins suggest that exposure to amyloids in general may pose a risk for disease development. To elucidate which protein fibril characteristics determine if and how heterologous amyloid seeding can occur, we investigated the potential of amyloid fibrils formed from proteins found in food, hen egg white lysozyme, and bovine milk ß-lactoglobulin to cross-seed aSyn aggregation in the test tube. We observed that amyloid fibrils from lysozyme, but not ß-lactoglobulin, potently cross-seeded the aggregation of aSyn as indicated by a significantly shorter lag phase of aSyn aggregation in the presence of lysozyme fibrils. The cross-seeding effect of lysozyme was found to be primarily driven by a surface-mediated nucleation mechanism. The differential seeding effect of lysozyme and ß-lactoglobulin on aSyn aggregation could be explained on the basis of binding affinity, binding site, and electrostatic interactions. Our results indicate that heterologous seeding of proteins may occur depending on the physicochemical characteristics of the seed protein fibril. Our findings suggest that heterologous seeding has the potential to determine the pathogenesis of neurodegenerative amyloid diseases.


Asunto(s)
Amiloide/metabolismo , Proteínas en la Dieta/metabolismo , Agregado de Proteínas , alfa-Sinucleína/metabolismo , Animales , Bovinos , Pollos , Humanos , Lactoglobulinas/metabolismo , Muramidasa/metabolismo , Agregación Patológica de Proteínas/metabolismo
13.
Methods Appl Fluoresc ; 9(2): 025001, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33480360

RESUMEN

In health and environmental research, it is often necessary to quantify the concentrations of single (bio) nanoparticles present at very low concentrations. Suitable quantification approaches that rely on counting and tracking of single fluorescently labelled (bio) nanoparticles are often challenging since fluorophore self-quenching limits the maximum particle brightness. Here we study how the number of labels per nanoparticle influences the total brightness of fluorescently labelled cowpea chlorotic mottle virus (CCMV). We analyze in detail the photophysical interplay between the fluorophores on the virus particles. We deduce that the formation of dark aggregates and energy transfer towards these aggregates limits the total particle brightness that can be achieved. We show that by carefully selecting the number of fluorescent labels per CCMV, and thus minimizing the negative effects on particle brightness, it is possible to quantify fluorescently labelled CCMV concentrations down to fM concentrations in single particle counting experiments.


Asunto(s)
Bromovirus/aislamiento & purificación , Colorantes Fluorescentes/química , Carga Viral/métodos , Bromovirus/química , Fluorescencia
14.
PLoS One ; 16(1): e0245548, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33481908

RESUMEN

Knowledge of the mechanisms of assembly of amyloid proteins into aggregates is of central importance in building an understanding of neurodegenerative disease. Given that oligomeric intermediates formed during the aggregation reaction are believed to be the major toxic species, methods to track such intermediates are clearly needed. Here we present a method, electron paramagnetic resonance (EPR), by which the amount of intermediates can be measured over the course of the aggregation, directly in the reacting solution, without the need for separation. We use this approach to investigate the aggregation of α-synuclein (αS), a synaptic protein implicated in Parkinson's disease and find a large population of oligomeric species. Our results show that these are primary oligomers, formed directly from monomeric species, rather than oligomers formed by secondary nucleation processes, and that they are short-lived, the majority of them dissociates rather than converts to fibrils. As demonstrated here, EPR offers the means to detect such short-lived intermediate species directly in situ. As it relies only on the change in size of the detected species, it will be applicable to a wide range of self-assembling systems, making accessible the kinetics of intermediates and thus allowing the determination of their rates of formation and conversion, key processes in the self-assembly reaction.


Asunto(s)
Agregado de Proteínas , Multimerización de Proteína , alfa-Sinucleína/química , Cinética , Estructura Cuaternaria de Proteína
15.
Neuroscience ; 457: 186-195, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33482328

RESUMEN

Alpha-synuclein (αS) is an intrinsically disordered protein (IDP) that is abundantly present in the brain and is associated with Parkinson's disease (PD). In spite of its abundance and its contribution to PD pathogenesis, the exact cellular function of αS remains largely unknown. The ability of αS to remodel phospholipid model membranes combined with biochemical and cellular studies suggests that αS is involved in endocytosis. To unravel with which route(s) and stage(s) of the endocytic pathway αS is associated, we quantified the colocalization between αS and endocytic marker proteins in differentiated SH-SY5Y neuronal cells, using an object based colocalization analysis. Comparison with randomized data allowed us to discriminate between structural and coincidental colocalizations. A large fraction of the αS positive vesicles colocalizes with caveolin positive vesicles, a smaller fraction colocalizes with EEA1 and Rab7. We find no structural colocalization between αS and clathrin and Rab11 positive vesicles. We conclude that in a physiological context, αS is structurally associated with caveolin dependent membrane vesiculation and is found further along the endocytic pathway, in decreasing amounts, on early and late endosomes. Our results not only shed new light on the function of αS, they also provide a possible link between αS function and vesicle trafficking malfunction in PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Clatrina , Endocitosis , Humanos , Neuronas
16.
J Mol Cell Cardiol ; 141: 54-64, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32205183

RESUMEN

Cardiovascular disease is often associated with cardiac remodeling, including cardiac fibrosis, which may lead to increased stiffness of the heart wall. This stiffness in turn may cause subsequent failure of cardiac myocytes, however the response of these cells to increased substrate stiffness is largely unknown. To investigate the contractile response of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) to increased substrate stiffness, we generated a stable transgenic human pluripotent stem cell line expressing a fusion protein of α-Actinin and fluorescent mRubyII in a previously characterized NKX2.5-GFP reporter line. Cardiomyocytes differentiated from this line were subjected to a substrate with stiffness ranging from 4 kPa to 101 kPa, while contraction of sarcomeres and bead displacement in the substrate were measured for each single cardiomyocyte. We found that sarcomere dynamics in hPSC-CMs on polyacrylamide gels of increasing stiffness are not affected above physiological levels (21 kPa), but that contractile force increases up to a stiffness of 90 kPa, at which cell shortening, deducted from bead displacement, is significantly reduced compared to physiological stiffness. We therefore hypothesize that this discrepancy may be the cause of intracellular stress that leads to hypertrophy and consequent heart failure in vivo.


Asunto(s)
Actinina/metabolismo , Genes Reporteros , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Acrilamida/química , Actinina/genética , Secuencia de Bases , Fenómenos Biomecánicos , Diferenciación Celular , Femenino , Fluorescencia , Gelatina/química , Proteína Homeótica Nkx-2.5/metabolismo , Humanos , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Sarcómeros/metabolismo , Especificidad por Sustrato
17.
Arch Biochem Biophys ; 677: 108163, 2019 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-31672499

RESUMEN

Membrane proteins control and shape membrane trafficking processes. The role of protein structure in shaping cellular membranes is well established. However, a significant fraction of membrane proteins is disordered or contains long disordered regions. It becomes more and more clear that these disordered regions contribute to the function of membrane proteins. While the fold of a structured protein is essential for its function, being disordered seems to be a crucial feature of membrane bound intrinsically disordered proteins and protein regions. Here we outline the motifs that encode function in disordered proteins and discuss how these functional motifs enable disordered proteins to modulate membrane properties. These changes in membrane properties facilitate and regulate membrane trafficking processes which are highly abundant in eukaryotes.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas de la Membrana/metabolismo , Secuencias de Aminoácidos , Membrana Celular/química , Humanos , Proteínas Intrínsecamente Desordenadas/química , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/química , Transición de Fase , Dominios Proteicos
18.
Biomacromolecules ; 20(12): 4332-4344, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31721560

RESUMEN

Recent research indicates that the progression of Parkinson's disease can start from neurons of the enteric nervous system, which are in close contact with the gastrointestinal epithelium: α-synuclein molecules can be transferred from these epithelial cells in a prion-like fashion to enteric neurons. Thin mucus layers constitute a defense line against the exposure of noninfected cells to potentially harmful α-synuclein species. We show that-despite its mucoadhesive properties-α-synuclein can translocate across mucin hydrogels, and this process is accompanied by structural rearrangements of the mucin molecules within the gel. Penetration experiments with different α-synuclein variants and synthetic peptides suggest that two binding sites on α-synuclein are required to accomplish this rearrangement of the mucin matrix. Our results support the notion that the translocation of α-synuclein across mucus barriers observed here might be a critical step in the infection of the gastrointestinal epithelium and the development of Parkinson's disease.


Asunto(s)
Hidrogeles/química , Mucina 5AC/química , alfa-Sinucleína/química , Animales , Bovinos , Mucosa Gástrica/química , Mucosa Gástrica/metabolismo , Humanos , Mucosa Intestinal/química , Mucosa Intestinal/metabolismo , Mucina 5AC/metabolismo , Enfermedad de Parkinson/metabolismo , Porcinos , alfa-Sinucleína/metabolismo
19.
J Colloid Interface Sci ; 556: 172-179, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31445446

RESUMEN

The rich pool of protein conformations combined with the dimensions and properties of carbon nanotubes create new possibilities in functional materials and nanomedicine. Here, the intrinsically disordered protein α-synuclein is explored as a dispersant of single-walled carbon nanotubes (SWNTs) in water. We use a range of spectroscopic methods to quantify the amount of dispersed SWNT and to elucidate the binding mode of α-synuclein to SWNT. The dispersion ability of α-synuclein is good even with mild sonication and the obtained dispersion is very stable over time. The whole polypeptide chain is involved in the interaction accompanied by a fraction of the chain changing into a helical structure upon binding. Similar to other dispersants, we observe that only a small fraction (15-20%) of α-synuclein is adsorbed on the SWNT surface with an average residence time below 10 ms.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Nanotubos de Carbono/química , alfa-Sinucleína/química , Coloides , Humanos
20.
Biomacromolecules ; 20(10): 3696-3703, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31418555

RESUMEN

Membraneless organelles are liquid compartments within cells with different solvent properties than the surrounding environment. This difference in solvent properties is thought to result in function-related selective partitioning of proteins. Proteins have also been shown to accumulate in polyelectrolyte complexes, but whether the uptake in these complexes is selective has not been ascertained yet. Here, we show the selective partitioning of two structurally similar but oppositely charged proteins into polyelectrolyte complexes. We demonstrate that these proteins can be separated from a mixture by altering the polyelectrolyte complex composition and released from the complex by lowering the pH. Combined, we demonstrate that polyelectrolyte complexes can separate proteins from a mixture based on protein charge. Besides providing deeper insight into the selective partitioning in membraneless organelles, potential applications for selective biomolecule partitioning in polyelectrolyte complexes include drug delivery or extraction processes.


Asunto(s)
Fraccionamiento Químico/métodos , Muramidasa/química , Polielectrolitos/química , Concentración de Iones de Hidrógeno , Electricidad Estática , Fracciones Subcelulares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...