Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 17: 1207350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293629

RESUMEN

A common preclinical model of hypertension characterized by low circulating renin is the "deoxycorticosterone acetate (DOCA)-salt" model, which influences blood pressure and metabolism through mechanisms involving the angiotensin II type 1 receptor (AT1R) in the brain. More specifically, AT1R within Agouti-related peptide (AgRP) neurons of the arcuate nucleus of the hypothalamus (ARC) has been implicated in selected effects of DOCA-salt. In addition, microglia have been implicated in the cerebrovascular effects of DOCA-salt and angiotensin II. To characterize DOCA-salt effects upon the transcriptomes of individual cell types within the ARC, we used single-nucleus RNA sequencing (snRNAseq) to examine this region from male C57BL/6J mice that underwent sham or DOCA-salt treatment. Thirty-two unique primary cell type clusters were identified. Sub-clustering of neuropeptide-related clusters resulted in identification of three distinct AgRP subclusters. DOCA-salt treatment caused subtype-specific changes in gene expression patterns associated with AT1R and G protein signaling, neurotransmitter uptake, synapse functions, and hormone secretion. In addition, two primary cell type clusters were identified as resting versus activated microglia, and multiple distinct subtypes of activated microglia were suggested by sub-cluster analysis. While DOCA-salt had no overall effect on total microglial density within the ARC, DOCA-salt appeared to cause a redistribution of the relative abundance of activated microglia subtypes. These data provide novel insights into cell-specific molecular changes occurring within the ARC during DOCA-salt treatment, and prompt increased investigation of the physiological and pathophysiological significance of distinct subtypes of neuronal and glial cell types.

2.
Cell Rep ; 40(8): 111239, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36001982

RESUMEN

Fibroblast growth factor 21 (FGF21) is a liver-derived endocrine hormone that functions to regulate energy homeostasis and macronutrient intake. Recently, FGF21 was reported to be produced and secreted from hypothalamic tanycytes, to regulate peripheral lipid metabolism; however, rigorous investigation of FGF21 expression in the brain has yet to be accomplished. Using a mouse model that drives CRE recombinase in FGF21-expressing cells, we demonstrate that FGF21 is not expressed in the hypothalamus, but instead is produced from the retrosplenial cortex (RSC), an essential brain region for spatial learning and memory. Furthermore, we find that central FGF21 produced in the RSC enhances spatial memory but does not regulate energy homeostasis or sugar intake. Finally, our data demonstrate that administration of FGF21 prolongs the duration of long-term potentiation in the hippocampus and enhances activation of hippocampal neurons. Thus, endogenous and pharmacological FGF21 appear to function in the hippocampus to enhance spatial memory.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Hígado , Animales , Metabolismo Energético/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Homeostasis/fisiología , Hígado/metabolismo , Ratones , Ratones Noqueados
3.
Mol Metab ; 64: 101564, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35944896

RESUMEN

OBJECTIVE: Fibroblast growth factor 21 (FGF21) is a peripherally-derived endocrine hormone that acts on the central nervous system (CNS) to regulate whole body energy homeostasis. Pharmacological administration of FGF21 promotes weight loss in obese animal models and human subjects with obesity. However, the central targets mediating these effects are incompletely defined. METHODS: To explore the mechanism for FGF21's effects to lower body weight, we pharmacologically administer FGF21 to genetic animal models lacking the obligate FGF21 co-receptor, ß-klotho (KLB), in either glutamatergic (Vglut2-Cre) or GABAergic (Vgat-Cre) neurons. In addition, we abolish FGF21 signaling to leptin receptor (LepR-Cre) positive cells. Finally, we examine the synergistic effects of FGF21 and leptin to lower body weight and explore the importance of physiological leptin levels in FGF21-mediated regulation of body weight. RESULTS: Here we show that FGF21 signaling to glutamatergic neurons is required for FGF21 to modulate energy expenditure and promote weight loss. In addition, we demonstrate that FGF21 signals to leptin receptor-expressing cells to regulate body weight, and that central leptin signaling is required for FGF21 to fully stimulate body weight loss during obesity. Interestingly, co-administration of FGF21 and leptin synergistically leads to robust weight loss. CONCLUSIONS: These data reveal an important endocrine crosstalk between liver- and adipose-derived signals which integrate in the CNS to modulate energy homeostasis and body weight regulation.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Leptina , Receptores de Leptina , Animales , Peso Corporal , Factores de Crecimiento de Fibroblastos/farmacología , Humanos , Leptina/metabolismo , Leptina/farmacología , Neuronas/metabolismo , Obesidad/metabolismo , Receptores de Leptina/genética , Pérdida de Peso
4.
Physiol Genomics ; 54(6): 196-205, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35476598

RESUMEN

The brain renin-angiotensin system (RAS) is implicated in control of blood pressure (BP), fluid intake, and energy expenditure (EE). Angiotensin II (ANG II) within the arcuate nucleus of the hypothalamus contributes to control of resting metabolic rate (RMR) and thereby EE through its actions on Agouti-related peptide (AgRP) neurons, which also contribute to EE control by leptin. First, we determined that although leptin stimulates EE in control littermates, mice with transgenic activation of the brain RAS (sRA) exhibit increased EE and leptin has no additive effect to exaggerate EE in these mice. These findings led us to hypothesize that leptin and ANG II in the brain stimulate EE through a shared mechanism. Because AgRP signaling to the melanocortin MC4R receptor contributes to the metabolic effects of leptin, we performed a series of studies examining RMR, fluid intake, and BP responses to ANG II in mice rendered deficient for expression of MC4R via a transcriptional block (Mc4r-TB). These mice were resistant to stimulation of RMR in response to activation of the endogenous brain RAS via chronic deoxycorticosterone acetate (DOCA)-salt treatment, whereas fluid and electrolyte effects remained intact. These mice were also resistant to stimulation of RMR via acute intracerebroventricular (ICV) injection of ANG II, whereas BP responses to ICV ANG II remained intact. Collectively, these data demonstrate that the effects of ANG II within the brain to control RMR and EE are dependent on MC4R signaling, whereas fluid homeostasis and BP responses are independent of MC4R signaling.


Asunto(s)
Angiotensina II , Metabolismo Energético , Leptina , Receptor de Melanocortina Tipo 4 , Proteína Relacionada con Agouti/metabolismo , Angiotensina II/farmacología , Animales , Presión Sanguínea/fisiología , Encéfalo/metabolismo , Metabolismo Energético/fisiología , Leptina/metabolismo , Leptina/farmacología , Melanocortinas/metabolismo , Melanocortinas/farmacología , Ratones , Receptor de Melanocortina Tipo 4/metabolismo
5.
Cell Metab ; 34(2): 317-328.e6, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108517

RESUMEN

Excessive alcohol consumption is a major health and social issue in our society. Pharmacologic administration of the endocrine hormone fibroblast growth factor 21 (FGF21) suppresses alcohol consumption through actions in the brain in rodents, and genome-wide association studies have identified single nucleotide polymorphisms in genes involved with FGF21 signaling as being associated with increased alcohol consumption in humans. However, the neural circuit(s) through which FGF21 signals to suppress alcohol consumption are unknown, as are its effects on alcohol consumption in higher organisms. Here, we demonstrate that administration of an FGF21 analog to alcohol-preferring non-human primates reduces alcohol intake by 50%. Further, we reveal that FGF21 suppresses alcohol consumption through a projection-specific subpopulation of KLB-expressing neurons in the basolateral amygdala. Our results illustrate how FGF21 suppresses alcohol consumption through a specific population of neurons in the brain and demonstrate its therapeutic potential in non-human primate models of excessive alcohol consumption.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Estudio de Asociación del Genoma Completo , Consumo de Bebidas Alcohólicas , Animales , Sistema Endocrino/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo
6.
Mol Metab ; 55: 101405, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34844020

RESUMEN

OBJECTIVE: Uncoupling protein 1 (UCP1) is a mitochondrial protein critical for adaptive thermogenesis in adipose tissues, and it is typically believed to be restricted to thermogenic adipose tissues. UCP1-Cre transgenic mice are utilized in numerous studies to provide "brown adipose-specific" conditional gene targeting. Here, we examined the distribution of Cre and UCP1 throughout the body in UCP1-Cre reporter mice. METHODS: UCP1-Cre mice crossed to Ai14-tdTomato and Ai9-tdTomato reporter mice were used to explore the tissue distribution of Cre recombinase and Ucp1 mRNA in various tissues. UCP1-Cre mice were independently infected with either a Cre-dependent PHP.eB-tdTomato virus or a Cre-dependent AAV-tdTomato virus to determine whether and where UCP1 is actively expressed in the adult central nervous system. In situ analysis of the deposited single cell RNA sequencing data was used to evaluate Ucp1 expression in the hypothalamus. RESULTS: As expected, Ucp1 expression was detected in both brown and inguinal adipose tissues. Ucp1 expression was also detected in the kidney, adrenal glands, thymus, and hypothalamus. Consistent with detectable Ucp1 expression, tdTomato expression was also observed in brown adipose tissue, inguinal white adipose tissue, kidney, adrenal glands, and hypothalamus of both male and female UCP1-Cre; Ai14-tdTomato and UCP1-Cre; Ai9-tdTomato mice by fluorescent imaging and qPCR. Critically, expression of tdTomato, and thus UCP1, within the central nervous system was observed in regions of the brain critical for the regulation of energy homeostasis, including the ventromedial hypothalamus (VMH). CONCLUSIONS: TdTomato expression in UCP1-Cre; tdTomato mice is not restricted to thermogenic adipose tissues. TdTomato was also expressed in the kidneys, adrenal glands, and throughout the brain, including brain regions and cell types that are critical for multiple aspects of central regulation of energy homeostasis. Collectively, these data have important implications for the utility of UCP1-Cre mice as genetic tools to investigate gene function specifically in brown adipose tissue.


Asunto(s)
Marcación de Gen/métodos , Termogénesis/fisiología , Proteína Desacopladora 1/genética , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Regulación de la Temperatura Corporal/genética , Regulación de la Temperatura Corporal/fisiología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiología , Femenino , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ARN Mensajero/metabolismo , Proteína Desacopladora 1/metabolismo
8.
Sci Rep ; 10(1): 19521, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177640

RESUMEN

Alterations in macronutrient intake can have profound effects on energy intake and whole-body metabolism. For example, reducing protein intake increases energy expenditure, increases insulin sensitivity and decreases body weight in rodents. Fibroblast growth factor 21 (FGF21) signaling in the brain is necessary for the metabolic effects of dietary protein restriction and has more recently been proposed to promote protein preference. However, the neuron populations through which FGF21 elicits these effects are unknown. Here, we demonstrate that deletion of ß-klotho in glutamatergic, but not GABAergic, neurons abrogated the effects of dietary protein restriction on reducing body weight, but not on improving insulin sensitivity in both diet-induced obese and lean mice. Specifically, FGF21 signaling in glutamatergic neurons is necessary for protection against body weight gain and induction of UCP1 in adipose tissues associated with dietary protein restriction. However, ß-klotho expression in glutamatergic neurons was dispensable for the effects of dietary protein restriction to increase insulin sensitivity. In addition, we report that FGF21 administration does not alter protein preference, but instead promotes the foraging of other macronutrients primarily by suppressing simple sugar consumption. This work provides important new insights into the neural substrates and mechanisms behind the endocrine control of metabolism during dietary protein dilution.


Asunto(s)
Proteínas en la Dieta/farmacología , Factores de Crecimiento de Fibroblastos/metabolismo , Neuronas/metabolismo , Pérdida de Peso/fisiología , Animales , Dieta con Restricción de Proteínas , Dieta Reductora , Proteínas en la Dieta/química , Neuronas GABAérgicas/metabolismo , Resistencia a la Insulina , Proteínas Klotho , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Obesidad/dietoterapia , Obesidad/metabolismo , Transducción de Señal , Sacarosa/farmacología , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
9.
Cell Metab ; 32(2): 273-286.e6, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32640184

RESUMEN

Fibroblast growth factor 21 (FGF21) is an endocrine hormone produced by the liver that regulates nutrient and metabolic homeostasis. FGF21 production is increased in response to macronutrient imbalance and signals to the brain to suppress sugar intake and sweet-taste preference. However, the central targets mediating these effects have been unclear. Here, we identify FGF21 target cells in the hypothalamus and reveal that FGF21 signaling to glutamatergic neurons is both necessary and sufficient to mediate FGF21-induced sugar suppression and sweet-taste preference. Moreover, we show that FGF21 acts directly in the ventromedial hypothalamus (VMH) to specifically regulate sucrose intake, but not non-nutritive sweet-taste preference, body weight, or energy expenditure. Finally, our data demonstrate that FGF21 affects neuronal activity by increasing activation and excitability of neurons in the VMH. Thus, FGF21 signaling to glutamatergic neurons in the VMH is an important component of the neurocircuitry that functions to regulate sucrose intake.


Asunto(s)
Carbohidratos/administración & dosificación , Factores de Crecimiento de Fibroblastos/metabolismo , Neuronas/metabolismo , Animales , Ingestión de Energía , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal
10.
Mol Metab ; 36: 100965, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32240964

RESUMEN

OBJECTIVE: T-box 1 (TBX1) has been identified as a genetic marker of beige adipose tissue. TBX1 is a mesodermal development transcription factor essential for tissue patterning and cell fate determination. However, whether it plays a role in the process of adipose beiging or how it functions in adipose tissue has not been reported. Here, we examined the function of TBX1 in adipose tissue as well as adipose-derived stem cells from mice and humans. METHODS: Adipose-specific TBX1 transgenic (TBX1 AdipoTG) and adipose-specific TBX1 knockout (TBX1 AdipoKO) mice were generated to explore the function of TBX1 in the process of adipose beiging, metabolism and energy homeostasis in vivo. In vitro, we utilized a siRNA mediated approach to determine the function of TBX1 during adipogenesis in mouse and human stem cells. RESULTS: Adipose-specific overexpression of TBX1 was not sufficient to fully induce beiging and prevent diet-induced obesity. However, adipose TBX1 expression was necessary to defend body temperature during cold through regulation of UCP1 and for maintaining ß3-adrenergic sensitivity and glucose homeostasis in vivo. Loss of adipose TBX1 expression enhanced basal lipolysis and reduced the size of subcutaneous iWAT adipocytes. Reduction of TBX1 expression via siRNA significantly impaired adipogenesis of mouse stromal vascular cells but significantly enhanced adipogenesis in human adipose derived stem cells. CONCLUSIONS: Adipose expression of TBX1 is necessary, but not sufficient, to defend body temperature during cold via proper UCP1 expression. Adipose TBX1 expression was also required for proper insulin signaling in subcutaneous adipose as well as for maintaining ß-adrenergic sensitivity, but overexpression of TBX1 was not sufficient to induce adipocyte beiging or to prevent diet-induced obesity. TBX1 expression is enriched in adipose stem cells in which it has contrasting effects on adipogenesis in mouse versus human cells. Collectively, these data demonstrate the importance of adipose TBX1 in the regulation of beige adipocyte function, energy homeostasis, and adipocyte development.


Asunto(s)
Tejido Adiposo Beige/metabolismo , Grasa Subcutánea/metabolismo , Proteínas de Dominio T Box/metabolismo , Adipocitos Beige/metabolismo , Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Adipogénesis/fisiología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Diferenciación Celular/genética , Regulación de la Expresión Génica/genética , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Obesidad/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal/genética , Grasa Subcutánea/fisiología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/fisiología , Termogénesis/fisiología , Proteína Desacopladora 1/metabolismo
11.
Am J Physiol Regul Integr Comp Physiol ; 318(5): R855-R869, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32186897

RESUMEN

Angiotensin II (ANG II) Agtr1a receptor (AT1A) is expressed in cells of the arcuate nucleus of the hypothalamus that express the leptin receptor (Lepr) and agouti-related peptide (Agrp). Agtr1a expression in these cells is required to stimulate resting energy expenditure in response to leptin and high-fat diets (HFDs), but the mechanism activating AT1A signaling by leptin remains unclear. To probe the role of local paracrine/autocrine ANG II generation and signaling in this mechanism, we bred mice harboring a conditional allele for angiotensinogen (Agt, encoding AGT) with mice expressing Cre-recombinase via the Lepr or Agrp promoters to cause cell-specific deletions of Agt (AgtLepr-KO and AgtAgrp-KO mice, respectively). AgtLepr-KO mice were phenotypically normal, arguing against a paracrine/autocrine AGT signaling mechanism for metabolic control. In contrast, AgtAgrp-KO mice exhibited reduced preweaning survival, and surviving adults exhibited altered renal structure and steroid flux, paralleling previous reports of animals with whole body Agt deficiency or Agt disruption in albumin (Alb)-expressing cells (thought to cause liver-specific disruption). Surprisingly, adult AgtAgrp-KO mice exhibited normal circulating AGT protein and hepatic Agt mRNA expression but reduced Agt mRNA expression in adrenal glands. Reanalysis of RNA-sequencing data sets describing transcriptomes of normal adrenal glands suggests that Agrp and Alb are both expressed in this tissue, and fluorescent reporter gene expression confirms Cre activity in adrenal gland of both Agrp-Cre and Alb-Cre mice. These findings lead to the iconoclastic conclusion that extrahepatic (i.e., adrenal) expression of Agt is critically required for normal renal development and survival.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Proteína Relacionada con Agouti/metabolismo , Angiotensinógeno/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Metabolismo Energético , Riñón/metabolismo , Receptores de Leptina/metabolismo , Glándulas Suprarrenales/crecimiento & desarrollo , Proteína Relacionada con Agouti/deficiencia , Proteína Relacionada con Agouti/genética , Angiotensinógeno/deficiencia , Angiotensinógeno/genética , Animales , Núcleo Arqueado del Hipotálamo/crecimiento & desarrollo , Comunicación Autocrina , Femenino , Regulación del Desarrollo de la Expresión Génica , Riñón/crecimiento & desarrollo , Masculino , Ratones Noqueados , Miocardio/metabolismo , Comunicación Paracrina , Receptores de Leptina/deficiencia , Receptores de Leptina/genética , Albúmina Sérica/genética , Albúmina Sérica/metabolismo , Transducción de Señal
12.
Curr Hypertens Rep ; 20(3): 25, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29556733

RESUMEN

PURPOSE OF REVIEW: Here, we review the current understanding of the functional neuroanatomy of neurons expressing Agouti-related peptide (AgRP) and the angiotensin 1A receptor (AT1A) within the arcuate nucleus (ARC) in the control of energy balance. RECENT FINDINGS: The development and maintenance of obesity involves suppression of resting metabolic rate (RMR). RMR control is integrated via AgRP and proopiomelanocortin neurons within the ARC. Their projections to other hypothalamic and extrahypothalamic nuclei contribute to RMR control, though relatively little is known about the contributions of individual projections and the neurotransmitters involved. Recent studies highlight a role for AT1A, localized to AgRP neurons, but the specific function of AT1A within these cells remains unclear. AT1A functions within AgRP neurons to control RMR, but additional work is required to clarify its role within subpopulations of AgRP neurons projecting to distinct second-order nuclei, and the molecular mediators of its signaling within these cells.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Angiotensinas/metabolismo , Núcleo Arqueado del Hipotálamo/fisiología , Metabolismo Energético/fisiología , Receptor de Angiotensina Tipo 1/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Humanos , Hipertensión/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Transducción de Señal/fisiología
13.
Am J Physiol Regul Integr Comp Physiol ; 314(6): R770-R780, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364700

RESUMEN

Angiotensin II (ANG) stimulates the release of arginine vasopressin (AVP) from the neurohypophysis through activation of the AT1 receptor within the brain, although it remains unclear whether AT1 receptors expressed on AVP-expressing neurons directly mediate this control. We explored the hypothesis that ANG acts through AT1A receptors expressed directly on AVP-producing cells to regulate AVP secretion. In situ hybridization and transgenic mice demonstrated localization of AVP and AT1A mRNA in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN), but coexpression of both AVP and AT1A mRNA was only observed in the SON. Mice harboring a conditional allele for the gene encoding the AT1A receptor (AT1Aflox) were then crossed with AVP-Cre mice to generate mice that lack AT1A in all cells that express the AVP gene (AT1AAVP-KO). AT1AAVP-KO mice exhibited spontaneously increased plasma and serum osmolality but no changes in fluid or salt-intake behaviors, hematocrit, or total body water. AT1AAVP-KO mice exhibited reduced AVP secretion (estimated by measurement of copeptin) in response to osmotic stimuli such as acute hypertonic saline loading and in response to chronic intracerebroventricular ANG infusion. However, the effects of these receptors on AVP release were masked by complex stimuli such as overnight dehydration and DOCA-salt treatment, which simultaneously induce osmotic, volemic, and pressor stresses. Collectively, these data support the expression of AT1A in AVP-producing cells of the SON but not the PVN, and a role for AT1A receptors in these cells in the osmotic regulation of AVP secretion.


Asunto(s)
Receptor de Angiotensina Tipo 1/fisiología , Núcleo Supraóptico/metabolismo , Núcleo Supraóptico/fisiología , Vasopresinas/biosíntesis , Vasopresinas/fisiología , Angiotensina II/administración & dosificación , Angiotensina II/farmacología , Animales , Agua Corporal , Conducta Alimentaria , Inyecciones Intraventriculares , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Ósmosis , Núcleo Hipotalámico Paraventricular/metabolismo , Receptor de Angiotensina Tipo 1/biosíntesis , Receptor de Angiotensina Tipo 1/genética , Sodio en la Dieta , Vasoconstrictores/administración & dosificación , Vasoconstrictores/farmacología
14.
J Clin Invest ; 127(4): 1414-1424, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28263184

RESUMEN

Leptin contributes to the control of resting metabolic rate (RMR) and blood pressure (BP) through its actions in the arcuate nucleus (ARC). The renin-angiotensin system (RAS) and angiotensin AT1 receptors within the brain are also involved in the control of RMR and BP, but whether this regulation overlaps with leptin's actions is unclear. Here, we have demonstrated the selective requirement of the AT1A receptor in leptin-mediated control of RMR. We observed that AT1A receptors colocalized with leptin receptors (LEPRs) in the ARC. Cellular coexpression of AT1A and LEPR was almost exclusive to the ARC and occurred primarily within neurons expressing agouti-related peptide (AgRP). Mice lacking the AT1A receptor specifically in LEPR-expressing cells failed to show an increase in RMR in response to a high-fat diet and deoxycorticosterone acetate-salt (DOCA-salt) treatments, but BP control remained intact. Accordingly, loss of RMR control was recapitulated in mice lacking AT1A in AgRP-expressing cells. We conclude that angiotensin activates divergent mechanisms to control BP and RMR and that the brain RAS functions as a major integrator for RMR control through its actions at leptin-sensitive AgRP cells of the ARC.


Asunto(s)
Angiotensina II/fisiología , Receptor de Angiotensina Tipo 1/metabolismo , Receptores de Leptina/metabolismo , Proteína Relacionada con Agouti/fisiología , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Metabolismo Basal , Presión Sanguínea , Dieta Alta en Grasa , Femenino , Neuronas GABAérgicas/metabolismo , Leptina/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proopiomelanocortina/fisiología , Transporte de Proteínas , alfa-MSH/fisiología
15.
Cell Rep ; 16(6): 1548-1560, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27477281

RESUMEN

Activation of the brain renin-angiotensin system (RAS) stimulates energy expenditure through increasing of the resting metabolic rate (RMR), and this effect requires simultaneous suppression of the circulating and/or adipose RAS. To identify the mechanism by which the peripheral RAS opposes RMR control by the brain RAS, we examined mice with transgenic activation of the brain RAS (sRA mice). sRA mice exhibit increased RMR through increased energy flux in the inguinal adipose tissue, and this effect is attenuated by angiotensin II type 2 receptor (AT2) activation. AT2 activation in inguinal adipocytes opposes norepinephrine-induced uncoupling protein-1 (UCP1) production and aspects of cellular respiration, but not lipolysis. AT2 activation also opposes inguinal adipocyte function and differentiation responses to epidermal growth factor (EGF). These results highlight a major, multifaceted role for AT2 within inguinal adipocytes in the control of RMR. The AT2 receptor may therefore contribute to body fat distribution and adipose depot-specific effects upon cardio-metabolic health.


Asunto(s)
Adipocitos/metabolismo , Encéfalo/metabolismo , Metabolismo Energético/fisiología , Receptor de Angiotensina Tipo 2/metabolismo , Sistema Renina-Angiotensina/fisiología , Tejido Adiposo Blanco/metabolismo , Angiotensina II/metabolismo , Animales , Ratones Endogámicos C57BL , Obesidad/metabolismo
16.
Cell Metab ; 23(2): 335-43, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26724858

RESUMEN

The liver is an important integrator of nutrient metabolism, yet no liver-derived factors regulating nutrient preference or carbohydrate appetite have been identified. Here we show that the liver regulates carbohydrate intake through production of the hepatokine fibroblast growth factor 21 (FGF21), which markedly suppresses consumption of simple sugars, but not complex carbohydrates, proteins, or lipids. Genetic loss of FGF21 in mice increases sucrose consumption, whereas acute administration or overexpression of FGF21 suppresses the intake of both sugar and non-caloric sweeteners. FGF21 does not affect chorda tympani nerve responses to sweet tastants, instead reducing sweet-seeking behavior and meal size via neurons in the hypothalamus. This liver-to-brain hormonal axis likely represents a negative feedback loop as hepatic FGF21 production is elevated by sucrose ingestion. We conclude that the liver functions to regulate macronutrient-specific intake by producing an endocrine satiety signal that acts centrally to suppress the intake of "sweets."


Asunto(s)
Sistema Endocrino/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Preferencias Alimentarias/efectos de los fármacos , Hígado/metabolismo , Sacarosa/farmacología , Gusto/efectos de los fármacos , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Sistema Endocrino/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Ratones Noqueados , Proteínas Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo
17.
Sci Rep ; 5: 11123, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26068176

RESUMEN

Dietary fats and sodium are both palatable and are hypothesized to synergistically contribute to ingestive behavior and thereby obesity. Contrary to this hypothesis, C57BL/6J mice fed a 45% high fat diet exhibited weight gain that was inhibited by increased dietary sodium content. This suppressive effect of dietary sodium upon weight gain was mediated specifically through a reduction in digestive efficiency, with no effects on food intake behavior, physical activity, or resting metabolism. Replacement of circulating angiotensin II levels reversed the effects of high dietary sodium to suppress digestive efficiency. While the AT1 receptor antagonist losartan had no effect in mice fed low sodium, the AT2 receptor antagonist PD-123,319 suppressed digestive efficiency. Correspondingly, genetic deletion of the AT2 receptor in FVB/NCrl mice resulted in suppressed digestive efficiency even on a standard chow diet. Together these data underscore the importance of digestive efficiency in the pathogenesis of obesity, and implicate dietary sodium, the renin-angiotensin system, and the AT2 receptor in the control of digestive efficiency regardless of mouse strain or macronutrient composition of the diet. These findings highlight the need for greater understanding of nutrient absorption control physiology, and prompt more uniform assessment of digestive efficiency in animal studies of energy balance.


Asunto(s)
Grasas de la Dieta/farmacología , Digestión/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos , Cloruro de Sodio Dietético/farmacología , Animales , Grasas de la Dieta/metabolismo , Digestión/genética , Eliminación de Gen , Imidazoles/farmacología , Absorción Intestinal/efectos de los fármacos , Absorción Intestinal/genética , Losartán/farmacología , Masculino , Ratones , Piridinas/farmacología , Receptor de Angiotensina Tipo 2/genética , Receptor de Angiotensina Tipo 2/metabolismo , Sistema Renina-Angiotensina/genética
18.
Curr Hypertens Rep ; 17(5): 38, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25833461

RESUMEN

The renin-angiotensin system (RAS) exists as a circulating hormone system but it is also used by various tissues of the body, including the brain, as a paracrine signaling mechanism. The local brain version of the RAS is mechanistically involved in fluid balance and blood pressure control, and there is growing appreciation for a role of the brain RAS in the control of energy balance. Here, we review major evidence for the control of energy balance by the brain RAS; outline the current understanding of the RAS components, targets, and mechanisms involved; and highlight some major questions that currently face the field.


Asunto(s)
Encéfalo/fisiología , Metabolismo Energético , Sistema Renina-Angiotensina , Animales , Presión Sanguínea/fisiología , Humanos , Obesidad/metabolismo , Equilibrio Hidroelectrolítico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA