Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Lancet Microbe ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761813

RESUMEN

BACKGROUND: Mutations in the Plasmodium falciparum dhfr gene confer resistance to pyrimethamine, which is widely used for malaria chemoprevention in Africa. We aimed to evaluate the frequency and evolution of dhfr mutations in Plasmodium ovale spp in Africa and their functional consequences, which are incompletely characterised. METHODS: We analysed dhfr mutations and their frequencies in P ovale spp isolates collected between Feb 1, 2004, and Aug 31, 2023, from the French National Malaria Reference Centre collection and from field studies in Benin, Gabon, and Kenya. Genetic patterns of positive selection were investigated. Full-length recombinant wild-type and mutant DHFR enzymes from both P ovale curtisi and P ovale wallikeri were expressed in bacteria to test whether the most common mutations reduced pyrimethamine susceptibility. FINDINGS: We included 518 P ovale spp samples (314 P ovale curtisi and 204 P ovale wallikeri). In P ovale curtisi, Ala15Ser-Ser58Arg was the most common dhfr mutation (39%; 124 of 314 samples). In P ovale wallikeri, dhfr mutations were less frequent, with Phe57Leu-Ser58Arg reaching 17% (34 of 204 samples). These two mutants were the most prevalent in central and east Africa and were fixed in Kenyan isolates. We detected six and four other non-synonymous mutations, representing 8% (24 isolates) and 2% (five isolates) of the P ovale curtisi and P ovale wallikeri isolates, respectively. Whole-genome sequencing and microsatellite analyses revealed reduced genetic diversity around the mutant pocdhfr and powdhfr genes. The mutant DHFR proteins showed structural changes at the pyrimethamine binding site in-silico, confirmed by a 4-times increase in pyrimethamine half-maximal inhibitory concentration in an Escherichia coli growth assay for the Phe57Leu-Ser58Arg mutant and 50-times increase for the Ala15Ser-Ser58Arg mutant, compared with the wild-type counterparts. INTERPRETATION: The widespread use of sulfadoxine-pyrimethamine for malaria chemoprevention might have exerted fortuitous selection pressure for dhfr mutations in P ovale spp. This calls for closer monitoring of dhfr and dhps mutations in P ovale spp. FUNDING: French Ministry of Health, Agence Nationale de la Recherche, and Global Emerging Infections Surveillance branch of the Armed Forces Health Surveillance Division.

2.
J Infect Dis ; 228(8): 1089-1098, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37329228

RESUMEN

Like Plasmodium vivax, both Plasmodium ovale curtisi and Plasmodium ovale wallikeri have the ability to cause relapse in humans, defined as recurring asexual parasitemia originating from liver-dormant forms subsequent to a primary infection. Here, we investigated relapse patterns in P ovale wallikeri infections from a cohort of travelers who were exposed to the parasite in sub-Saharan Africa and then experienced relapses after their return to France. Using a novel set of 8 highly polymorphic microsatellite markers, we genotyped 15 P ovale wallikeri relapses. For most relapses, the paired primary and relapse infections were highly genetically related (with 12 being homologous), an observation that was confirmed by whole-genome sequencing for the 4 relapses we further studied. This is, to our knowledge, the first genetic evidence of relapses in P ovale spp.


Asunto(s)
Malaria , Plasmodium ovale , Humanos , Plasmodium ovale/genética , Malaria/parasitología , Plasmodium vivax/genética , Recurrencia , Repeticiones de Microsatélite/genética
3.
Malar J ; 22(1): 24, 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36670482

RESUMEN

BACKGROUND: The objective of this study was to estimate malaria transmission and insecticide resistance status in malaria vectors in Adjrako village from Zè District in Southern Benin. The present study was carried out prior to investigations on infectivity of blood from asymptomatic carriers of Plasmodium falciparum to malaria vector mosquitoes. METHODS: Human landing collections (HLCs) were performed in Adjrako village during the rainy season (September-November 2021). In this village, host-seeking mosquitoes were collected during three nights per survey from 22:00 to 06:00 in six randomly selected houses. Malaria vectors were dissected in orders to determinate their parity. Plasmodium falciparum infection in malaria vectors was determined by qPCR and the entomological inoculation rate (EIR) was calculated. The World Health Organization (WHO) insecticide susceptibility test-kits were used to evaluate the susceptibility of Anopheles gambiae sensu lato (s.l.) to deltamethrin at 0.05% and bendiocarb at 0.1%. RESULTS: A total of 3260 females of mosquitoes belonging to 4 genera (Anopheles, Culex, Aedes and Mansonia) were collected. Most of the mosquitoes collected were An. gambiae sensu lato (s.l.). The entomological inoculation rate (EIR) for the three collection months was 8.7 infective bites per person and the parity rate was 84%. Mortality rates of An. gambiae s.l. exposed to 0.05% deltamethrin and 0.1% bendiocarb were 18% and 96%, respectively, indicating that this vector population was resistant to deltamethrin and possibly resistant to bendiocarb in the study area. CONCLUSION: This study showed that malaria transmission is effective in the study area and that An. gambiae s.l. is the main malaria vector. The entomological parameters indicate this study area is potentially favourable for investigations on P. falciparum asymptomatic carriers.


Asunto(s)
Anopheles , Malaria Falciparum , Malaria , Animales , Femenino , Humanos , Plasmodium falciparum/genética , Benin/epidemiología , Mosquitos Vectores , Malaria Falciparum/epidemiología , Resistencia a los Insecticidas
4.
Clin Infect Dis ; 76(4): 631-639, 2023 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-36208204

RESUMEN

BACKGROUND: Exposure of blood to malaria parasites can lead to infection even in the absence of the mosquito vector. During a stay in a healthcare facility, accidental inoculation of the skin with blood from a malaria patient might occur, referred to as nosocomial malaria. METHODS: Between 2007 and 2021, we identified 6 autochthonous malaria cases that occurred in different French hospitals, originating from nosocomial transmission and imported malaria cases being the infection source. Four cases were observed during the coronavirus disease 2019 pandemic. The genetic relatedness between source and nosocomial infections was evaluated by genome-wide short tandem repeats (STRs) and single-nucleotide polymorphisms (SNPs). RESULTS: None of the patients with autochthonous malaria had travel history to an endemic area nor had been transfused. For each case, both the source and recipient patients stayed a few hours in the same ward. After diagnosis, autochthonous cases were treated with antimalarials and all recovered except 1. Genetically, each pair of matched source/nosocomial parasite infections showed <1% of different STRs and <6.9% (<1.5% for monoclonal infections) of different SNPs. Similar levels of genetic differences were obtained for parasite DNA samples that were independently sequenced twice as references of identical infections. Parasite phylogenomics were consistent with travel information reported by the source patients. CONCLUSIONS: Our study demonstrates that genomics analyses may resolve nosocomial malaria transmissions, despite the uncertainty regarding the modes of contamination. Nosocomial transmission of potentially life-threatening parasites should be taken into consideration in settings or occasions where compliance with universal precautions is not rigorous.


Asunto(s)
Antimaláricos , COVID-19 , Infección Hospitalaria , Malaria , Animales , Humanos , Infección Hospitalaria/tratamiento farmacológico , Estudios Retrospectivos , Malaria/epidemiología , Antimaláricos/uso terapéutico , Viaje , Genómica , Francia
5.
EBioMedicine ; 82: 104167, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35843175

RESUMEN

BACKGROUND: In malaria-endemic areas, subjects from specific groups like Fulani have a peculiar protection against malaria, with high levels of IgM but also frequent anaemia and splenomegaly. The mechanisms underlying this phenotype remain elusive. METHODS: In a cohort study set up in Benin, West Africa, after a careful evaluation of malaria-related phenotypes, we measured the deformability of circulating erythrocytes in genetically distinct groups (including Fulani) living in sympatry, using ektacytometry and microsphiltration, a mimic of how the spleen clears rigid erythrocytes. Heritability of erythrocytes deformability was calculated, followed by a genome-wide association study (GWAS) of the same phenotype. FINDINGS: Compared to non-Fulani, Fulani displayed a higher deformability of circulating erythrocytes, pointing to an enhanced clearance of rigid erythrocytes by the spleen. This phenotype was observed in individuals displaying markers of Plasmodium falciparum infection. The heritability of this new trait was high, with a strong multigenic component. Five of the top 10 genes selected by a population structure-adjusted GWAS, expressed in the spleen, are potentially involved in splenic clearance of erythrocytes (CHERP, MB, PALLD, SPARC, PDE10A), through control of vascular tone, collagen synthesis and macrophage activity. INTERPRETATION: In specific ethnic groups, genetically-controlled processes likely enhance the innate retention of infected and uninfected erythrocytes in the spleen, explaining splenomegaly, anaemia, cryptic intrasplenic parasite loads, hyper-IgM, and partial protection against malaria. Beyond malaria-related phenotypes, inherited splenic hyper-filtration of erythrocytes may impact the pathogenesis of other hematologic diseases. FUNDING: ANR, National Geographic Society, IMEA, IRD, and Région Ile-de-France.


Asunto(s)
Anemia , Malaria Falciparum , Malaria , Anemia/genética , Estudios de Cohortes , Proteínas de Unión al ADN/genética , Eritrocitos/parasitología , Estudio de Asociación del Genoma Completo , Humanos , Inmunidad Innata , Inmunoglobulina M , Malaria Falciparum/parasitología , Proteínas de la Membrana/genética , Hidrolasas Diéster Fosfóricas , Plasmodium falciparum/genética , Proteínas de Unión al ARN/genética , Bazo , Esplenomegalia/genética
6.
Clin Infect Dis ; 75(7): 1242-1244, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35213688

RESUMEN

A returned traveler to Uganda presented with a Plasmodium falciparum kelch13 A675V mutant infection that exhibited delayed clearance under artesunate therapy. Parasites were genetically related to recently reported Ugandan artemisinin-resistant A675V parasites. Adequate malaria prevention measures and clinical and genotypic surveillance are important tools to avoid and track artemisinin resistance.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Artesunato/uso terapéutico , Resistencia a Medicamentos/genética , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias , Uganda
7.
Malar J ; 21(1): 61, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193586

RESUMEN

The addition of a third anti-malarial drug matching the pharmacokinetic characteristics of the slowly eliminated partner drug in artemisinin-based combination therapy (ACT) has been proposed as new therapeutic paradigm for the treatment of uncomplicated falciparum malaria. These triple artemisinin-based combination therapy (TACT) should in theory more effectively prevent the development and spread of multidrug resistance than current ACT. Several clinical trials evaluating TACT-or other multidrug anti-malarial combination therapy (MDACT)-have been reported and more are underway. From a regulatory perspective, these clinical development programmes face a strategic dilemma: pivotal clinical trials evaluating TACT are designed to test for non-inferiority of efficacy compared to standard ACT as primary endpoint. While meeting the endpoint of non-inferior efficacy, TACT are consistently associated with a slightly higher frequency of adverse drug reactions than currently used ACT. Moreover, the prevention of the selection of specific drug resistance-one of the main reasons for TACT development-is beyond the scope of even large-scale clinical trials. This raises important questions: if equal efficacy is combined with poorer tolerability, how can then the actual benefit of these drug combinations be demonstrated? How should clinical development plans be conceived to provide objective evidence for or against an improved management of patients and effective prevention of anti-malarial drug resistance by TACT? What are the objective criteria to ultimately convince regulators to approve these new products? In this Opinion paper, the authors discuss the challenges for the clinical development of triple and multidrug anti-malarial combination therapies and the hard choices that need to be taken in the further clinical evaluation and future implementation of this new treatment paradigm.


Asunto(s)
Antimaláricos , Malaria Falciparum , Antimaláricos/farmacología , Ensayos Clínicos como Asunto , Combinación de Medicamentos , Resistencia a Medicamentos , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Plasmodium falciparum
8.
Malar J ; 21(1): 51, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35172825

RESUMEN

BACKGROUND: Whole-genome sequencing (WGS) is becoming increasingly helpful to assist malaria control programmes. A major drawback of this approach is the large amount of human DNA compared to parasite DNA extracted from unprocessed whole blood. As red blood cells (RBCs) have a diameter of about 7-8 µm and exhibit some deformability, it was hypothesized that cheap and commercially available 5 µm filters might retain leukocytes but much less of Plasmodium falciparum-infected RBCs. This study aimed to test the hypothesis that such a filtration method, named 5WBF (for 5 µm Whole Blood Filtration), may provide highly enriched parasite material suitable for P. falciparum WGS. METHODS: Whole blood was collected from five patients experiencing a P. falciparum malaria episode (ring-stage parasitaemia range: 0.04-5.5%) and from mock samples obtained by mixing synchronized, ring-stage cultured P. falciparum 3D7 parasites with uninfected human whole blood (final parasitaemia range: 0.02-1.1%). These whole blood samples (50 to 400 µL) were diluted in RPMI 1640 medium or PBS 1× buffer and filtered with a syringe connected to a 5 µm commercial filter. DNA was extracted from 5WBF-treated and unfiltered counterpart blood samples using a commercial kit. The 5WBF method was evaluated on the ratios of parasite:human DNA assessed by qPCR and by sequencing depth and percentages of coverage from WGS data (Illumina NextSeq 500). As a comparison, the popular selective whole-genome amplification (sWGA) method, which does not rely on blood filtration, was applied to the unfiltered counterpart blood samples. RESULTS: After applying 5WBF, qPCR indicated an average of twofold loss in the amount of parasite template DNA (Pf ARN18S gene) and from 4096- to 65,536-fold loss of human template DNA (human ß actin gene). WGS analyses revealed that > 95% of the  parasite nuclear and organellar genomes were all covered at ≥ 10× depth for all samples tested. In sWGA counterparts, the organellar genomes were poorly covered and from 47.7 to 82.1% of the nuclear genome was covered at ≥ 10× depth depending on parasitaemia. Sequence reads were homogeneously distributed across gene sequences for 5WBF-treated samples (n = 5460 genes; mean coverage: 91×; median coverage: 93×; 5th percentile: 70×; 95th percentile: 103×), allowing the identification of gene copy number variations such as for gch1. This later analysis was not possible for sWGA-treated samples, as a much more heterogeneous distribution of reads across gene sequences was observed (mean coverage: 80×; median coverage: 51×; 5th percentile: 7×; 95th percentile: 245×). CONCLUSIONS: The novel 5WBF leucodepletion method is simple to implement and based on commercially available, standardized 5 µm filters which cost from 1.0 to 1.7€ per unit depending on suppliers. 5WBF permits extensive genome-wide analysis of P. falciparum ring-stage isolates from minute amounts of whole blood even with parasitaemias as low as 0.02%.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Variaciones en el Número de Copia de ADN , ADN Protozoario/genética , Humanos , Plasmodium falciparum/genética , Secuenciación Completa del Genoma/métodos
9.
Antimicrob Agents Chemother ; 66(1): e0132021, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34606334

RESUMEN

Partial artemisinin resistance, defined in patients as a delayed parasite clearance following artemisinin-based treatment, is conferred by non-synonymous mutations in the Kelch beta-propeller domain of the Plasmodium falciparum k13 (pfk13) gene. Here, we carried out in vitro selection over a 1-year period on a West African P. falciparum strain isolated from Kolle (Mali) under a dose-escalating artemisinin regimen. After 18 cycles of sequential drug pressure, the selected parasites exhibited enhanced survival to dihydroartemisinin in the ring-stage survival assay (RSA0-3h = 9.2%). Sanger and whole-genome sequence analyses identified the PfK13 P413A mutation, localized in the BTB/POZ domain, upstream of the propeller domain. This mutation was sufficient to confer in vitro artemisinin resistance when introduced into the PfK13 coding sequence of the parasite strain Dd2 by CRISPR/Cas9 gene editing. These results together with structural studies of the protein demonstrate that the propeller domain is not the sole in vitro mediator of PfK13-mediated artemisinin resistance, and highlight the importance of monitoring for mutations throughout PfK13.


Asunto(s)
Antimaláricos , Artemisininas , Dominio BTB-POZ , Proteínas Protozoarias , Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos/genética , Mutación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
10.
Commun Biol ; 3(1): 726, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262483

RESUMEN

To ensure the transport of nutrients necessary for their survival, Plasmodium falciparum parasites increase erythrocyte permeability to diverse solutes. These new permeation pathways (NPPs) have been extensively characterized in the pathogenic asexual parasite stages, however the existence of NPPs has never been investigated in gametocytes, the sexual stages responsible for transmission to mosquitoes. Here, we show that NPPs are still active in erythrocytes infected with immature gametocytes and that this activity declines along gametocyte maturation. Our results indicate that NPPs are regulated by cyclic AMP (cAMP) signaling cascade, and that the decrease in cAMP levels in mature stages results in a slowdown of NPP activity. We also show that NPPs facilitate the uptake of artemisinin derivatives and that phosphodiesterase (PDE) inhibitors can reactivate NPPs and increase drug uptake in mature gametocytes. These processes are predicted to play a key role in P. falciparum gametocyte biology and susceptibility to antimalarials.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Eritrocitos/parasitología , Interacciones Huésped-Parásitos/fisiología , Estadios del Ciclo de Vida/fisiología , Plasmodium falciparum/patogenicidad , Antimaláricos/farmacocinética , Artemisininas/farmacocinética , Células Cultivadas , AMP Cíclico/metabolismo , Humanos , Inhibidores de Fosfodiesterasa , Transducción de Señal/fisiología
11.
ACS Infect Dis ; 6(7): 1532-1547, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32267151

RESUMEN

Three novel tracers designed as fluorescent surrogates of artemisinin-derived antimalarial drugs (i.e., dihydroartemisinin, artemether, arteether, and artemisone) were synthesized from dihydroartemisinin. One of these tracers, corresponding to a dihydroartemisinin/artemether/arteether mimic, showed a combination of excellent physicochemical and biological properties such as hydrolytic stability, high inhibitory potency against blood-stage parasites, similar ring-stage survival assay values than the clinical antimalarials, high cytopermeability and specific labeling of live P. falciparum cells, alkylation of heme, as well as specific covalent labeling of drug-sensitive and drug-resistant P. falciparum proteomes at physiological concentrations, consistent with a multitarget action of the drugs. Our study demonstrates that probes containing the complete structural core of clinical artemisinin derivatives can be stable in biochemical and cellular settings, and recapitulate the complex mechanisms of these frontline, yet threatened, antimalarial drugs.


Asunto(s)
Antimaláricos , Artemisininas , Antimaláricos/farmacología , Arteméter , Artemisininas/farmacología
12.
Artículo en Inglés | MEDLINE | ID: mdl-32179528

RESUMEN

The continuous spread of antimalarial drug resistance is a threat to current chemotherapy efficacy. Therefore, characterizing the genetic diversity of drug resistance markers is needed to follow treatment effectiveness and further update control strategies. Here, we genotyped Plasmodium falciparum resistance gene markers associated with sulfadoxine-pyrimethamine (SP) and artemisinin-based combination therapy (ACT) in isolates from pregnant women in Ghana. The prevalence of the septuple IRN I- A/FG K GS/Tpfdhfr/pfdhps haplotypes, including the pfdhps A581G and A613S/T mutations, was high at delivery among post-SP treatment isolates (18.2%) compared to those of first antenatal care (before initiation of intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine [IPTp-SP]; 6.1%; P = 0.03). Regarding the pfk13 marker gene, two nonsynonymous mutations (N458D and A481C) were detected at positions previously related to artemisinin resistance in isolates from Southeast Asia. These mutations were predicted in silico to alter the stability of the pfk13 propeller-encoding domain. Overall, these findings highlight the need for intensified monitoring and surveillance of additional mutations associated with increased SP resistance as well as emergence of resistance against artemisinin derivatives.


Asunto(s)
Antimaláricos , Malaria Falciparum , Parásitos , Preparaciones Farmacéuticas , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Femenino , Ghana , Humanos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/genética , Embarazo , Mujeres Embarazadas , Proteínas Protozoarias/uso terapéutico , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Tetrahidrofolato Deshidrogenasa/genética
13.
Sci Rep ; 10(1): 4842, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179795

RESUMEN

Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to several antimalarial drugs such as chloroquine (CQ) or piperaquine (PPQ), a partner molecule in current artemisinin-based combination therapies. As a member of the Drug/Metabolite Transporter (DMT) superfamily, the vacuolar transporter PfCRT may translocate substrate molecule(s) across the membrane of the digestive vacuole (DV), a lysosome-like organelle. However, the physiological substrate(s), the transport mechanism and the functional regions of PfCRT remain to be fully characterized. Here, we hypothesized that identification of evolutionary conserved sites in a tertiary structural context could help locate putative functional regions of PfCRT. Hence, site-specific substitution rates were estimated over Plasmodium evolution at each amino acid sites, and the PfCRT tertiary structure was predicted in both inward-facing (open-to-vacuole) and occluded states through homology modeling using DMT template structures sharing <15% sequence identity with PfCRT. We found that the vacuolar-half and membrane-spanning domain (and especially the transmembrane helix 9) of PfCRT were more conserved, supporting that its physiological substrate is expelled out of the parasite DV. In the PfCRT occluded state, some evolutionary conserved sites, including positions related to drug resistance mutations, participate in a putative binding pocket located at the core of the PfCRT membrane-spanning domain. Through structural comparison with experimentally-characterized DMT transporters, we identified several conserved PfCRT amino acid sites located in this pocket as robust candidates for mediating substrate transport. Finally, in silico mutagenesis revealed that drug resistance mutations caused drastic changes in the electrostatic potential of the transporter vacuolar entry and pocket, facilitating the escape of protonated CQ and PPQ from the parasite DV.


Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Resistencia a Medicamentos/genética , Evolución Molecular , Proteínas de Transporte de Membrana/genética , Mutación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Quinolinas/farmacología , Aminoácidos/metabolismo , Proteínas de Transporte de Membrana/química , Pruebas de Sensibilidad Parasitaria , Filogenia , Plasmodium falciparum/citología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/química , Vacuolas
14.
Biochim Biophys Acta Mol Cell Res ; 1867(5): 118661, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31987792

RESUMEN

Artemisinin and its derivatives kill malaria parasites and inhibit the proliferation of cancer cells. In both processes, heme was shown to play a key role in artemisinin bioactivation. We found that artemisinin and clinical artemisinin derivatives are able to compensate for a mutation in the yeast Bcs1 protein, a key chaperon involved in biogenesis of the mitochondrial respiratory complex III. The equivalent Bcs1 variant causes an encephalopathy in human by affecting complex III assembly. We show that artemisinin derivatives decrease the content of mitochondrial cytochromes and disturb the maturation of the complex III cytochrome c1. This last effect is likely responsible for the compensation by decreasing the detrimental over-accumulation of the inactive pre-complex III observed in the bcs1 mutant. We further show that a fluorescent dihydroartemisinin probe rapidly accumulates in the mitochondrial network and targets cytochromes c and c1 in yeast, human cells and isolated mitochondria. In vitro this probe interacts with purified cytochrome c only under reducing conditions and we detect cytochrome c-dihydroartemisinin covalent adducts by mass spectrometry analyses. We propose that reduced mitochondrial c-type cytochromes act as both targets and mediators of artemisinin bioactivation in yeast and human cells.


Asunto(s)
Artemisininas/farmacología , Citocromos c/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Artemisininas/química , Regulación hacia Abajo , Complejo III de Transporte de Electrones/genética , Células HEK293 , Humanos , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Mutación , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Trends Parasitol ; 35(12): 953-963, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31699532

RESUMEN

Artemisinin is the most widely-used compound against malaria and plays a critical role in the treatment of malaria worldwide. Resistance to artemisinin emerged about a decade ago in Southeast Asia and it is paramount to prevent its spread or emergence in Africa. Artemisinin has a complex mode of action and can cause widespread injury to many components of the parasite. In this review, we outline the different metabolic pathways affected by artemisinin, including the unfolded protein response, protein polyubiquitination, proteasome, phosphatidylinositol-3-kinase, and the eukaryotic translation initiation factor 2α. Based on recently published data, we present a model of how these different pathways interplay and how mutations in K13, the main identified resistance marker, may help parasites survive under artemisinin pressure.


Asunto(s)
Artemisininas/farmacología , Artemisininas/uso terapéutico , Resistencia a Medicamentos/genética , Modelos Biológicos , Plasmodium/efectos de los fármacos , Plasmodium/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Humanos , Malaria/tratamiento farmacológico , Mutación , Proteínas Protozoarias/genética
16.
Methods Mol Biol ; 2013: 151-162, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31267500

RESUMEN

The diversity of Anopheles species and the environmental issues posed by the large-scale use of insecticides make it unlikely that malaria elimination will be achieved by fighting mosquitoes only. Malaria elimination necessitates targeting the parasite itself. For this, in the absence of efficient vaccines against the disease, antimalarial drugs remain the primary tool. We present here the limitations of currently available antimalarials and the different implementation strategies of these drugs, which ultimately depends on the epidemiological context of the disease.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Animales , Humanos , Malaria/epidemiología , Control de Mosquitos
17.
Sci Rep ; 9(1): 10675, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337835

RESUMEN

Numerous mutations in the Plasmodium falciparum Kelch13 (K13) protein confer resistance to artemisinin derivatives, the current front-line antimalarial drugs. K13 is an essential protein that contains BTB and Kelch-repeat propeller (KREP) domains usually found in E3 ubiquitin ligase complexes that target substrate protein(s) for ubiquitin-dependent degradation. K13 is thought to bind substrate proteins, but its functional/interaction sites and the structural alterations associated with artemisinin resistance mutations remain unknown. Here, we screened for the most evolutionarily conserved sites in the protein structure of K13 as indicators of structural and/or functional constraints. We inferred structure-dependent substitution rates at each amino acid site of the highly conserved K13 protein during the evolution of Apicomplexa parasites. We found two solvent-exposed patches of extraordinarily conserved sites likely involved in protein-protein interactions, one in BTB and the other one in KREP. The conserved patch in K13 KREP overlaps with a shallow pocket that displays a differential electrostatic surface potential, relative to neighboring sites, and that is rich in serine and arginine residues. Comparative structural and evolutionary analyses revealed that these properties were also found in the functionally-validated shallow pocket of other KREPs including that of the cancer-related KEAP1 protein. Finally, molecular dynamics simulations carried out on PfK13 R539T and C580Y artemisinin resistance mutant structures revealed some local structural destabilization of KREP but not in its shallow pocket. These findings open new avenues of research on one of the most enigmatic malaria proteins with the utmost clinical importance.


Asunto(s)
Artemisininas/farmacología , Resistencia a Medicamentos/genética , Malaria Falciparum/parasitología , Proteínas Protozoarias/metabolismo , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Evolución Molecular , Malaria Falciparum/tratamiento farmacológico , Simulación de Dinámica Molecular , Plasmodium falciparum , Proteínas Protozoarias/genética
18.
Clin Infect Dis ; 67(6): 913-919, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29514207

RESUMEN

Background: Although trimethoprim-sulfamethoxazole is the more efficient drug for prophylactic and curative treatment of pneumocystosis, atovaquone is considered a second-line prophylactic treatment in immunocompromised patients. Variations in atovaquone absorption and mutant fungi selection after atovaquone exposure have been associated with atovaquone prophylactic failure. We report here a Pneumocystis jirovecii cytochrome b (cyt b) mutation (A144V) associated with such prophylactic failure during a pneumocystosis outbreak among heart transplant recipients. Methods: Analyses of clinical data, serum drug dosage, and molecular modeling of the P. jirovecii Rieske-cyt b complex were performed to investigate these prophylactic failures. Results: The cyt b A144V mutation was detected in all infected, heart transplant recipient patients exposed to atovaquone prophylaxis but in none of 11 other immunocompromised, infected control patients not treated with atovaquone. Serum atovaquone concentrations associated with these prophylactic failures were similar than those found in noninfected exposed control patients under a similar prophylactic regimen. Computational modeling of the P. jirovecii Rieske-cyt b complex and in silico mutagenesis indicated that the cyt b A144V mutation might alter the volume of the atovaquone-binding pocket, which could decrease atovaquone binding. Conclusions: These data suggest that the cyt b A144V mutation confers diminished sensitivity to atovaquone, resulting in spread of Pneumocystis pneumonia among heart transplant recipients submitted to atovaquone prophylaxis. Potential selection and interhuman transmission of resistant P. jirovecii strain during atovaquone prophylactic treatment has to be considered and could limit its extended large-scale use in immucompromised patients.


Asunto(s)
Antifúngicos/farmacología , Atovacuona/farmacología , Citocromos b/genética , Trasplante de Corazón , Pneumocystis carinii/genética , Neumonía por Pneumocystis/etiología , Adulto , Anciano , Simulación por Computador , Brotes de Enfermedades , Femenino , Proteínas Fúngicas/genética , Humanos , Huésped Inmunocomprometido , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutación , Pneumocystis carinii/efectos de los fármacos , Pneumocystis carinii/enzimología , Receptores de Trasplantes , Insuficiencia del Tratamiento
20.
PLoS One ; 12(4): e0175328, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28410415

RESUMEN

OBJECTIVES: Imported malaria in France is characterized by various clinical manifestations observed in a heterogeneous population of patients such as travelers/expatriates and African migrants. In this population, host factors and parasite biomass associated with severe imported malaria are poorly known. METHODS: From data collected by the Centre National de Référence du Paludisme, we identified epidemiological, demographic and biological features including parasite biomass and anti-plasmodial antibody levels (negative, positive and strongly positive serology) associated with different disease severity groups (very severe, moderately severe, and uncomplicated malaria) in 3 epidemiological groups (travelers/expatriates, first- and second-generation migrants). RESULTS: Age, ethnicity, absence of prior infection with P. falciparum, antibody levels, plasma PfHRP2 levels, total and circulating parasite biomass were related to severe malaria onset. Sequestered parasite biomass tended to be increased in very severe malaria, and was strongly correlated to the antibody level of the host. CONCLUSIONS: Prior exposure to P. falciparum is associated with high anti-plasmodial antibody levels which influence clinical presentation of imported malaria and its correlated circulating and sequestered parasite burden.


Asunto(s)
Biomasa , Interacciones Huésped-Parásitos , Malaria Falciparum/patología , Plasmodium falciparum/metabolismo , Adulto , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/sangre , Demografía , Femenino , Francia/epidemiología , Humanos , Modelos Logísticos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Plasmodium falciparum/aislamiento & purificación , Proteínas Protozoarias/sangre , Factores de Riesgo , Índice de Severidad de la Enfermedad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA