Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Open Biol ; 14(1): 230312, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38228171

RESUMEN

The infectious process of bacteria of the genus Salmonella requires the finely regulated use of various virulence factors. Among them, the type 3 secretion system-1 (T3SS-1) and the Rck and PagN invasins are involved in the internalization of the pathogen within eukaryotic cells, but their precise role in the host and in the pathogenic process is still poorly understood. In this study, we aimed to determine the kinetics of expression of these entry factors in a typhoid fever-like and a gastroenteritis model in mice by in vivo imaging using bioluminescent Salmonella Typhimurium reporter strains carrying chromosomal transcriptional fusions. Only pagN and T3SS-1 transcription has been clearly identified. Independently of the pathological model, the caecum was identified as the main transcription site of both pagN and the T3SS-1-encoding gene both at early and late stages of the infection. An intense transcription of pagN was also observed in deep organs in the typhoid fever-like model, while that of T3SS-1 remained quite sporadic in these organs, and mainly focused on the intestine all along the infection. This work will help to understand the respective role of these entry factors at the cellular level in the pathogenesis of Salmonella in vivo.


Asunto(s)
Fiebre Tifoidea , Animales , Ratones , Modelos Animales de Enfermedad , Salmonella typhimurium/genética , Intestinos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
BMC Biol ; 20(1): 189, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002835

RESUMEN

BACKGROUND: T cell activation leads to increased expression of the receptor for the iron transporter transferrin (TfR) to provide iron required for the cell differentiation and clonal expansion that takes place during the days after encounter with a cognate antigen. However, T cells mobilise TfR to their surface within minutes after activation, although the reason and mechanism driving this process remain unclear. RESULTS: Here we show that T cells transiently increase endocytic uptake and recycling of TfR upon activation, thereby boosting their capacity to import iron. We demonstrate that increased TfR recycling is powered by a fast endocytic sorting pathway relying on the membrane proteins flotillins, Rab5- and Rab11a-positive endosomes. Our data further reveal that iron import is required for a non-canonical signalling pathway involving the kinases Zap70 and PAK, which controls adhesion of the integrin LFA-1 and eventually leads to conjugation with antigen-presenting cells. CONCLUSIONS: Altogether, our data suggest that T cells boost their iron importing capacity immediately upon activation to promote adhesion to antigen-presenting cells.


Asunto(s)
Receptores de Transferrina , Transferrina , Endocitosis/fisiología , Endosomas/metabolismo , Hierro/metabolismo , Receptores de Transferrina/metabolismo , Linfocitos T , Transferrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...