Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bull Math Biol ; 86(7): 85, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853189

RESUMEN

How viral infections develop can change based on the number of viruses initially entering the body. The understanding of the impacts of infection doses remains incomplete, in part due to challenging constraints, and a lack of research. Gaining more insights is crucial regarding the measles virus (MV). The higher the MV infection dose, the earlier the peak of acute viremia, but the magnitude of the peak viremia remains almost constant. Measles is highly contagious, causes immunosuppression such as lymphopenia, and contributes substantially to childhood morbidity and mortality. This work investigated mechanisms underlying the observed wild-type measles infection dose responses in cynomolgus monkeys. We fitted longitudinal data on viremia using maximum likelihood estimation, and used the Akaike Information Criterion (AIC) to evaluate relevant biological hypotheses and their respective model parameterizations. The lowest AIC indicates a linear relationship between the infection dose, the initial viral load, and the initial number of activated MV-specific T cells. Early peak viremia is associated with high initial number of activated MV-specific T cells. Thus, when MV infection dose increases, the initial viremia and associated immune cell stimulation increase, and reduce the time it takes for T cell killing to be sufficient, thereby allowing dose-independent peaks for viremia, MV-specific T cells, and lymphocyte depletion. Together, these results suggest that the development of measles depends on virus-host interactions at the start and the efficiency of viral control by cellular immunity. These relationships are additional motivations for prevention, vaccination, and early treatment for measles.


Asunto(s)
Macaca fascicularis , Conceptos Matemáticos , Virus del Sarampión , Sarampión , Carga Viral , Viremia , Sarampión/inmunología , Sarampión/transmisión , Sarampión/prevención & control , Sarampión/virología , Sarampión/epidemiología , Animales , Viremia/inmunología , Viremia/virología , Virus del Sarampión/inmunología , Virus del Sarampión/patogenicidad , Virus del Sarampión/fisiología , Funciones de Verosimilitud , Humanos , Modelos Inmunológicos , Modelos Biológicos , Linfocitos T/inmunología , Activación de Linfocitos
2.
Lancet Glob Health ; 12(4): e563-e571, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485425

RESUMEN

BACKGROUND: There have been declines in global immunisation coverage due to the COVID-19 pandemic. Recovery has begun but is geographically variable. This disruption has led to under-immunised cohorts and interrupted progress in reducing vaccine-preventable disease burden. There have, so far, been few studies of the effects of coverage disruption on vaccine effects. We aimed to quantify the effects of vaccine-coverage disruption on routine and campaign immunisation services, identify cohorts and regions that could particularly benefit from catch-up activities, and establish if losses in effect could be recovered. METHODS: For this modelling study, we used modelling groups from the Vaccine Impact Modelling Consortium from 112 low-income and middle-income countries to estimate vaccine effect for 14 pathogens. One set of modelling estimates used vaccine-coverage data from 1937 to 2021 for a subset of vaccine-preventable, outbreak-prone or priority diseases (ie, measles, rubella, hepatitis B, human papillomavirus [HPV], meningitis A, and yellow fever) to examine mitigation measures, hereafter referred to as recovery runs. The second set of estimates were conducted with vaccine-coverage data from 1937 to 2020, used to calculate effect ratios (ie, the burden averted per dose) for all 14 included vaccines and diseases, hereafter referred to as full runs. Both runs were modelled from Jan 1, 2000, to Dec 31, 2100. Countries were included if they were in the Gavi, the Vaccine Alliance portfolio; had notable burden; or had notable strategic vaccination activities. These countries represented the majority of global vaccine-preventable disease burden. Vaccine coverage was informed by historical estimates from WHO-UNICEF Estimates of National Immunization Coverage and the immunisation repository of WHO for data up to and including 2021. From 2022 onwards, we estimated coverage on the basis of guidance about campaign frequency, non-linear assumptions about the recovery of routine immunisation to pre-disruption magnitude, and 2030 endpoints informed by the WHO Immunization Agenda 2030 aims and expert consultation. We examined three main scenarios: no disruption, baseline recovery, and baseline recovery and catch-up. FINDINGS: We estimated that disruption to measles, rubella, HPV, hepatitis B, meningitis A, and yellow fever vaccination could lead to 49 119 additional deaths (95% credible interval [CrI] 17 248-134 941) during calendar years 2020-30, largely due to measles. For years of vaccination 2020-30 for all 14 pathogens, disruption could lead to a 2·66% (95% CrI 2·52-2·81) reduction in long-term effect from 37 378 194 deaths averted (34 450 249-40 241 202) to 36 410 559 deaths averted (33 515 397-39 241 799). We estimated that catch-up activities could avert 78·9% (40·4-151·4) of excess deaths between calendar years 2023 and 2030 (ie, 18 900 [7037-60 223] of 25 356 [9859-75 073]). INTERPRETATION: Our results highlight the importance of the timing of catch-up activities, considering estimated burden to improve vaccine coverage in affected cohorts. We estimated that mitigation measures for measles and yellow fever were particularly effective at reducing excess burden in the short term. Additionally, the high long-term effect of HPV vaccine as an important cervical-cancer prevention tool warrants continued immunisation efforts after disruption. FUNDING: The Vaccine Impact Modelling Consortium, funded by Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation. TRANSLATIONS: For the Arabic, Chinese, French, Portguese and Spanish translations of the abstract see Supplementary Materials section.


Asunto(s)
COVID-19 , Hepatitis B , Sarampión , Meningitis , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Rubéola (Sarampión Alemán) , Enfermedades Prevenibles por Vacunación , Fiebre Amarilla , Humanos , Infecciones por Papillomavirus/prevención & control , Pandemias , COVID-19/epidemiología , COVID-19/prevención & control , Vacunación , Inmunización , Hepatitis B/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...