Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neuron ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729150

RESUMEN

To investigate which activity patterns in sensory cortex are relevant for perceptual decision-making, we combined two-photon calcium imaging and targeted two-photon optogenetics to interrogate barrel cortex activity during perceptual discrimination. We trained mice to discriminate bilateral whisker deflections and report decisions by licking left or right. Two-photon calcium imaging revealed sparse coding of contralateral and ipsilateral whisker input in layer 2/3, with most neurons remaining silent during the task. Activating pyramidal neurons using two-photon holographic photostimulation evoked a perceptual bias that scaled with the number of neurons photostimulated. This effect was dominated by optogenetic activation of non-coding neurons, which did not show sensory or motor-related activity during task performance. Photostimulation also revealed potent recruitment of cortical inhibition during sensory processing, which strongly and preferentially suppressed non-coding neurons. Our results suggest that a pool of non-coding neurons, selectively suppressed by network inhibition during sensory processing, can be recruited to enhance perception.

2.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38352514

RESUMEN

High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but don't reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals, revealing the computational roles of neurons with distinct functional, molecular, and anatomical properties. We combine optogenetic activation and pharmacology using the cerebellum as a testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers. We train a semi-supervised deep-learning classifier that predicts cell types with greater than 95% accuracy based on waveform, discharge statistics, and layer of the recorded neuron. The classifier's predictions agree with expert classification on recordings using different probes, in different laboratories, from functionally distinct cerebellar regions, and across animal species. Our classifier extends the power of modern dynamical systems analyses by revealing the unique contributions of simultaneously-recorded cell types during behavior.

3.
Nat Neurosci ; 20(8): 1114-1121, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28628104

RESUMEN

Understanding how active dendrites are exploited for behaviorally relevant computations is a fundamental challenge in neuroscience. Grid cells in medial entorhinal cortex are an attractive model system for addressing this question, as the computation they perform is clear: they convert synaptic inputs into spatially modulated, periodic firing. Whether active dendrites contribute to the generation of the dual temporal and rate codes characteristic of grid cell output is unknown. We show that dendrites of medial entorhinal cortex neurons are highly excitable and exhibit a supralinear input-output function in vitro, while in vivo recordings reveal membrane potential signatures consistent with recruitment of active dendritic conductances. By incorporating these nonlinear dynamics into grid cell models, we show that they can sharpen the precision of the temporal code and enhance the robustness of the rate code, thereby supporting a stable, accurate representation of space under varying environmental conditions. Our results suggest that active dendrites may therefore constitute a key cellular mechanism for ensuring reliable spatial navigation.


Asunto(s)
Dendritas/fisiología , Corteza Entorrinal/fisiología , Células de Red/fisiología , Potenciales de la Membrana/fisiología , Animales , Masculino , Ratones Endogámicos C57BL , Modelos Neurológicos , Ritmo Teta/fisiología
4.
Cell Rep ; 12(11): 1715-22, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26344775

RESUMEN

Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, K(Ca)3.1) by local, activity-dependent calcium (Ca(2+)) influx at nodes of Ranvier via a T-type voltage-gated Ca(2+) current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells.


Asunto(s)
Axones/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Nódulos de Ranvier/metabolismo , Potenciales de Acción , Animales , Ratones , Ratones Endogámicos C57BL , Células de Purkinje/metabolismo
5.
Neuron ; 81(6): 1290-1296, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24656251

RESUMEN

Electrical coupling mediated by gap junctions is widespread in the mammalian CNS, and the interplay between chemical and electrical synapses on the millisecond timescale is crucial for determining patterns of synchrony in many neural circuits. Here we show that activation of glutamatergic synapses drives long-term depression of electrical coupling between neurons of the inferior olive. We demonstrate that this plasticity is not triggered by postsynaptic spiking alone and that it requires calcium entry following synaptic NMDA receptor activation. These results reveal that glutamatergic synapses can instruct plasticity at electrical synapses, providing a means for excitatory inputs to homeostatically regulate the long-term dynamics of microzones in olivocerebellar circuits.


Asunto(s)
Depresión Sináptica a Largo Plazo/fisiología , Núcleo Olivar/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Uniones Comunicantes/fisiología , Plasticidad Neuronal , Neuronas/fisiología , Núcleo Olivar/citología , Ratas
6.
Science ; 329(5999): 1671-5, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20705816

RESUMEN

The detection and discrimination of temporal sequences is fundamental to brain function and underlies perception, cognition, and motor output. By applying patterned, two-photon glutamate uncaging, we found that single dendrites of cortical pyramidal neurons exhibit sensitivity to the sequence of synaptic activation. This sensitivity is encoded by both local dendritic calcium signals and somatic depolarization, leading to sequence-selective spike output. The mechanism involves dendritic impedance gradients and nonlinear synaptic N-methyl-D-aspartate receptor activation and is generalizable to dendrites in different neuronal types. This enables discrimination of patterns delivered to a single dendrite, as well as patterns distributed randomly across the dendritic tree. Pyramidal cell dendrites can thus act as processing compartments for the detection of synaptic sequences, thereby implementing a fundamental cortical computation.


Asunto(s)
Dendritas/fisiología , Espinas Dendríticas/fisiología , Células Piramidales/fisiología , Corteza Somatosensorial/fisiología , Sinapsis/fisiología , Corteza Visual/fisiología , Potenciales de Acción , Animales , Calcio/metabolismo , Señalización del Calcio , Dendritas/ultraestructura , Espinas Dendríticas/ultraestructura , Potenciales Postsinápticos Excitadores , Modelos Neurológicos , Células Piramidales/ultraestructura , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Somatosensorial/citología , Factores de Tiempo , Corteza Visual/citología
7.
J Physiol ; 588(Pt 10): 1709-17, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20351049

RESUMEN

Cerebellar Purkinje cells produce two distinct forms of action potential output: simple and complex spikes. Simple spikes occur spontaneously or are driven by parallel fibre input, while complex spikes are activated by climbing fibre input. Previous studies indicate that both simple and complex spikes originate in the axon of Purkinje cells, but the precise location where they are initiated is unclear. Here we address where in the axon of cerebellar Purkinje cells simple and complex spikes are generated. Using extracellular recording and voltage-sensitive dye imaging in rat and mouse Purkinje cells, we show that both simple and complex spikes are generated in the proximal axon, 15-20 mum from the soma. Once initiated, simple and complex spikes propagate both down the axon and back into the soma. The speed of backpropagation into the soma was significantly faster for complex compared to simple spikes, presumably due to charging of the somatodendritic membrane capacitance during the climbing fibre synaptic conductance. In conclusion, we show using two independent methods that the final integration site of simple and complex spikes is in the proximal axon of cerebellar Purkinje cells, at a location corresponding to the distal end of the axon initial segment.


Asunto(s)
Células de Purkinje/fisiología , Potenciales de Acción/fisiología , Animales , Axones/fisiología , Electrofisiología , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Ratas Wistar
8.
Neuron ; 62(3): 388-99, 2009 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-19447094

RESUMEN

Inferior olive neurons regulate plasticity and timing in the cerebellar cortex via the climbing fiber pathway, but direct characterization of the output of this nucleus has remained elusive. We show that single somatic action potentials in olivary neurons are translated into a burst of axonal spikes. The number of spikes in the burst depends on the phase of subthreshold oscillations and, therefore, encodes the state of the olivary network. These bursts can be successfully transmitted to the cerebellar cortex in vivo, having a significant impact on Purkinje cells. They enhance dendritic spikes, modulate the complex spike pattern, and promote short-term and long-term plasticity at parallel fiber synapses in a manner dependent on the number of spikes in the burst. Our results challenge the view that the climbing fiber conveys an all-or-none signal to the cerebellar cortex and help to link learning and timing theories of olivocerebellar function.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Vías Nerviosas/fisiología , Núcleo Olivar/fisiología , Células de Purkinje/fisiología , Animales , Axones/fisiología , Comunicación Celular/fisiología , Vías Nerviosas/citología , Plasticidad Neuronal/fisiología , Núcleo Olivar/citología , Periodicidad , Ratas , Ratas Sprague-Dawley , Umbral Sensorial/fisiología , Transducción de Señal/fisiología
9.
J Neurosci ; 28(30): 7599-609, 2008 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-18650337

RESUMEN

Activation of the climbing fiber input powerfully excites cerebellar Purkinje cells via hundreds of widespread dendritic synapses, triggering dendritic spikes as well as a characteristic high-frequency burst of somatic spikes known as the complex spike. To investigate the relationship between dendritic spikes and the spikelets within the somatic complex spike, and to evaluate the importance of the dendritic distribution of climbing fiber synapses, we made simultaneous somatic and dendritic patch-clamp recordings from Purkinje cells in cerebellar slices. Injection of large climbing fiber-like synaptic conductances at the soma using dynamic clamp was sufficient to reproduce the complex spike, independently of dendritic spikes, indicating that neither a dendritic synaptic distribution nor dendritic spikes are required. Furthermore, we found that dendritic spikes are not directly linked to spikelets in the complex spike, and that each dendritic spike is associated with only 0.24 +/- 0.09 extra somatic spikelets. Rather, we demonstrate that dendritic spikes regulate the pause in firing that follows the complex spike. Finally, using dual somatic and axonal recording, we show that all spikelets in the complex spike are axonally generated. Thus, complex spike generation proceeds relatively independently of dendritic spikes, reflecting the dual functional role of climbing fiber input: triggering plasticity at dendritic synapses and generating a distinct output signal in the axon. The encoding of dendritic spiking by the post-complex spike pause provides a novel computational function for dendritic spikes, which could serve to link these two roles at the level of the target neurons in the deep cerebellar nuclei.


Asunto(s)
Potenciales de Acción/fisiología , Cerebelo/citología , Conducción Nerviosa/fisiología , Células de Purkinje/fisiología , Animales , Animales Recién Nacidos , Axones/fisiología , Axones/efectos de la radiación , Calcio/metabolismo , Dendritas/fisiología , Dendritas/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Técnicas In Vitro , Modelos Neurológicos , Conducción Nerviosa/efectos de la radiación , Técnicas de Placa-Clamp/métodos , Células de Purkinje/citología , Ratas , Factores de Tiempo
11.
Nat Neurosci ; 8(2): 137-9, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15665877

RESUMEN

Knowledge of the site of action potential initiation is essential for understanding how synaptic input is converted into neuronal output. Previous studies have shown that the lowest-threshold site for initiation of action potentials is in the axon. Here we use recordings from visualized rat cerebellar Purkinje cell axons to localize the site of initiation to a well-defined anatomical structure: the first node of Ranvier, which normally forms at the first axonal branch point.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Cerebelo/citología , Lisina/análogos & derivados , Células de Purkinje/fisiología , Animales , Animales Recién Nacidos , Ancirinas/metabolismo , Simulación por Computador , Dendritas/fisiología , Estimulación Eléctrica/métodos , Técnica del Anticuerpo Fluorescente/métodos , Técnicas In Vitro , Lisina/metabolismo , Microscopía Confocal/métodos , Proteína Básica de Mielina/metabolismo , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Técnicas de Placa-Clamp/métodos , Nódulos de Ranvier/fisiología , Ratas , Tiempo de Reacción/efectos de la radiación , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
12.
J Neurosci ; 25(2): 464-72, 2005 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-15647490

RESUMEN

Axons have traditionally been viewed as highly faithful transmitters of action potentials. Recently, however, experimental evidence has accumulated to support the idea that under some circumstances axonal propagation may fail. Cerebellar Purkinje neurons fire highfrequency simple spikes, as well as bursts of spikes in response to climbing fiber activation (the "complex spike"). Here we have visualized the axon of individual Purkinje cells to directly investigate the relationship between somatic spikes and axonal spikes using simultaneous somatic whole-cell and cell-attached axonal patch-clamp recordings at 200-800 microm from the soma. We demonstrate that sodium action potentials propagate at frequencies up to approximately 260 Hz, higher than simple spike rates normally observed in vivo. Complex spikes, however, did not propagate reliably, with usually only the first and last spikes in the complex spike waveform being propagated. On average, only 1.7 +/- 0.2 spikes in the complex spike were propagated during resting firing, with propagation limited to interspike intervals above approximately 4 msec. Hyperpolarization improved propagation efficacy without affecting total axonal spike number, whereas strong depolarization could abolish propagation of the complex spike. These findings indicate that the complex spike waveform is not faithfully transmitted to downstream synapses and that propagation of the climbing fiber response may be modulated by background activity.


Asunto(s)
Axones/fisiología , Células de Purkinje/fisiología , Potenciales de Acción/fisiología , Animales , Calcio/fisiología , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Ratas , Ratas Sprague-Dawley
14.
J Neurosci ; 22(11): 4428-36, 2002 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12040050

RESUMEN

We have identified an excitatory synapse in cerebellar molecular layer interneurons at which the level of presynaptic activity determines the receptor type involved in the postsynaptic response. When small numbers of parallel fibers are activated, EPSCs are mediated solely by AMPA receptors (AMPARs), despite our finding that NMDA receptors (NMDARs) are present in the dendrites of these cells. The EPSC kinetics are fast (tau decay = 0.82 +/- 0.05 msec at room temperature), consistent with the role these interneurons are thought to play in precisely timed inhibitory control of Purkinje cells. NMDARs are activated only when glutamate release is increased either by facilitation with brief high-frequency trains or by recruiting more presynaptic fibers with higher stimulus intensities. Under these conditions, EPSCs consist of a fast-rising AMPAR-mediated current followed by a slow component mediated by both NMDARs and AMPARs. Inhibitors of glutamate transport increase the amplitude and prolong the time course of the compound EPSCs. In contrast, the properties of fast AMPAR EPSCs resulting from the activation of few inputs remain unchanged when glutamate uptake is blocked. Our results suggest that, at these synapses, the postsynaptic density contains AMPARs alone. It is only when transmitter release is high enough for glutamate to diffuse to the extrasynaptic space and to reach concentrations sufficient to activate extrasynaptic receptors that NMDARs are involved in the postsynaptic response. We suggest that such a spatial separation of receptor types may provide a mechanism for rapid changes in EPSC properties, depending on the amount of synaptic activity.


Asunto(s)
Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reclutamiento Neurofisiológico/fisiología , Sinapsis/metabolismo , Sistema de Transporte de Aminoácidos X-AG/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Cerebelo/citología , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Dendritas/metabolismo , Ácidos Dicarboxílicos/farmacología , Difusión , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Colorantes Fluorescentes , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Glicina/metabolismo , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Interneuronas/ultraestructura , Iontoforesis , Inhibidores de la Captación de Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Pirrolidinas/farmacología , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA