Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Aging Cell ; : e14192, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742929

RESUMEN

Age-related vision loss caused by retinal neurodegenerative pathologies is becoming more prevalent in our ageing society. To understand the physiological and molecular impact of ageing on retinal homeostasis, we used the short-lived African turquoise killifish, a model known to naturally develop central nervous system (CNS) ageing hallmarks and vision loss. Bulk and single-cell RNA-sequencing (scRNAseq) of three age groups (6-, 12-, and 18-week-old) identified transcriptional ageing fingerprints in the killifish retina, unveiling pathways also identified in the aged brain, including oxidative stress, gliosis, and inflammageing. These findings were comparable to observations in the ageing mouse retina. Additionally, transcriptional changes in genes related to retinal diseases, such as glaucoma and age-related macular degeneration, were observed. The cellular heterogeneity in the killifish retina was characterized, confirming the presence of all typical vertebrate retinal cell types. Data integration from age-matched samples between the bulk and scRNAseq experiments revealed a loss of cellular specificity in gene expression upon ageing, suggesting potential disruption in transcriptional homeostasis. Differential expression analysis within the identified cell types highlighted the role of glial/immune cells as important stress regulators during ageing. Our work emphasizes the value of the fast-ageing killifish in elucidating molecular signatures in age-associated retinal disease and vision decline. This study contributes to the understanding of how age-related changes in molecular pathways may impact CNS health, providing insights that may inform future therapeutic strategies for age-related pathologies.

2.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38559206

RESUMEN

Age-related vision loss caused by retinal neurodegenerative pathologies is becoming more prevalent in our ageing society. To understand the physiological and molecular impact of ageing on retinal homeostasis, we used the short-lived African turquoise killifish, a model known to naturally develop central nervous system (CNS) ageing hallmarks and vision loss. Bulk and single-cell RNA-sequencing (scRNA-seq) of three age groups (6-, 12-, and 18-week-old) identified transcriptional ageing fingerprints in the killifish retina, unveiling pathways also identified in the aged brain, including oxidative stress, gliosis, and inflammageing. These findings were comparable to observations in ageing mouse retina. Additionally, transcriptional changes in genes related to retinal diseases, such as glaucoma and age-related macular degeneration, were observed. The cellular heterogeneity in the killifish retina was characterised, confirming the presence of all typical vertebrate retinal cell types. Data integration from age-matched samples between the bulk and scRNA-seq experiments revealed a loss of cellular specificity in gene expression upon ageing, suggesting potential disruption in transcriptional homeostasis. Differential expression analysis within the identified cell types highlighted the role of glial/immune cells as important stress regulators during ageing. Our work emphasises the value of the fast-ageing killifish in elucidating molecular signatures in age-associated retinal disease and vision decline. This study contributes to the understanding of how age-related changes in molecular pathways may impact CNS health, providing insights that may inform future therapeutic strategies for age-related pathologies.

3.
Proc Natl Acad Sci U S A ; 120(2): e2204134120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595669

RESUMEN

Many epithelial compartments undergo constitutive renewal in homeostasis but activate unique regenerative responses following injury. The clear corneal epithelium is crucial for vision and is renewed from limbal stem cells (LSCs). Using single-cell RNA sequencing, we profiled the mouse corneal epithelium in homeostasis, aging, diabetes, and dry eye disease (DED), where tear deficiency predisposes the cornea to recurrent injury. In homeostasis, we capture the transcriptional states that accomplish continuous tissue turnover. We leverage our dataset to identify candidate genes and gene networks that characterize key stages across homeostatic renewal, including markers for LSCs. In aging and diabetes, there were only mild changes with <15 dysregulated genes. The constitutive cell types that accomplish homeostatic renewal were conserved in DED but were associated with activation of cell states that comprise "adaptive regeneration." We provide global markers that distinguish cell types in homeostatic renewal vs. adaptive regeneration and markers that specifically define DED-elicited proliferating and differentiating cell types. We validate that expression of SPARC, a marker of adaptive regeneration, is also induced in corneal epithelial wound healing and accelerates wound closure in a corneal epithelial cell scratch assay. Finally, we propose a classification system for LSC markers based on their expression fidelity in homeostasis and disease. This transcriptional dissection uncovers the dramatically altered transcriptional landscape of the corneal epithelium in DED, providing a framework and atlas for future study of these ocular surface stem cells in health and disease.


Asunto(s)
Síndromes de Ojo Seco , Epitelio Corneal , Limbo de la Córnea , Ratones , Animales , Limbo de la Córnea/fisiología , Diferenciación Celular/fisiología , Córnea , Cicatrización de Heridas/genética , Síndromes de Ojo Seco/genética , Síndromes de Ojo Seco/metabolismo , Homeostasis/genética
4.
Cell Rep ; 37(7): 109994, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34788628

RESUMEN

Gene regulatory networks (GRNs), consisting of transcription factors and their target sites, control neurogenesis and cell-fate specification in the developing central nervous system. In this study, we use integrated single-cell RNA and single-cell ATAC sequencing (scATAC-seq) analysis in developing mouse and human retina to identify multiple interconnected, evolutionarily conserved GRNs composed of cell-type-specific transcription factors that both activate genes within their own network and inhibit genes in other networks. These GRNs control temporal patterning in primary progenitors, regulate transition from primary to neurogenic progenitors, and drive specification of each major retinal cell type. We confirm that NFI transcription factors selectively activate expression of genes promoting late-stage temporal identity in primary retinal progenitors and identify other transcription factors that regulate rod photoreceptor specification in postnatal retina. This study inventories cis- and trans-acting factors that control retinal development and can guide cell-based therapies aimed at replacing retinal neurons lost to disease.


Asunto(s)
Tipificación del Cuerpo/genética , Linaje de la Célula/genética , Neurogénesis/genética , Retina/embriología , Animales , Diferenciación Celular/genética , Proteínas del Ojo/metabolismo , Femenino , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones/embriología , Factores de Transcripción NFI/metabolismo , Neuronas Retinianas/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Transactivadores/metabolismo
5.
Dev Biol ; 478: 41-58, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34146533

RESUMEN

Recent advances in high throughput single-cell RNA sequencing (scRNA-seq) technology have enabled the simultaneous transcriptomic profiling of thousands of individual cells in a single experiment. To investigate the intrinsic process of retinal development, researchers have leveraged this technology to quantify gene expression in retinal cells across development, in multiple species, and from numerous important models of human disease. In this review, we summarize recent applications of scRNA-seq and discuss how these datasets have complemented and advanced our understanding of retinal progenitor cell competence, cell fate specification, and differentiation. Finally, we also highlight the outstanding questions in the field that advances in single-cell data generation and analysis will soon be able to answer.


Asunto(s)
Células Madre Multipotentes/citología , RNA-Seq , Retina/crecimiento & desarrollo , Neuronas Retinianas/citología , Análisis de la Célula Individual , Animales , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Multipotentes/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Retina/citología , Retina/embriología , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Neuronas Retinianas/metabolismo , Transcriptoma
6.
Sci Adv ; 7(11)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33712461

RESUMEN

Retinal ganglion cells (RGCs) relay visual information from the eye to the brain. RGCs are the first cell type generated during retinal neurogenesis. Loss of function of the transcription factor Atoh7, expressed in multipotent early neurogenic retinal progenitors leads to a selective and essentially complete loss of RGCs. Therefore, Atoh7 is considered essential for conferring competence on progenitors to generate RGCs. Despite the importance of Atoh7 in RGC specification, we find that inhibiting apoptosis in Atoh7-deficient mice by loss of function of Bax only modestly reduces RGC numbers. Single-cell RNA sequencing of Atoh7;Bax-deficient retinas shows that RGC differentiation is delayed but that the gene expression profile of RGC precursors is grossly normal. Atoh7;Bax-deficient RGCs eventually mature, fire action potentials, and incorporate into retinal circuitry but exhibit severe axonal guidance defects. This study reveals an essential role for Atoh7 in RGC survival and demonstrates Atoh7-dependent and Atoh7-independent mechanisms for RGC specification.

7.
Sci Rep ; 11(1): 3858, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594190

RESUMEN

Neural progenitor cells undergo identity transitions during development to ensure the generation different types of neurons and glia in the correct sequence and proportions. A number of temporal identity factors that control these transitions in progenitor competence have been identified, but the molecular mechanisms underlying their function remain unclear. Here, we asked how Casz1, the mammalian orthologue of Drosophila castor, regulates competence during retinal development. We show that Casz1 is required to control the transition between neurogenesis and gliogenesis. Using BioID proteomics, we reveal that Casz1 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in retinal cells. Finally, we show that both the NuRD and the polycomb repressor complexes are required for Casz1 to promote the rod fate and suppress gliogenesis. As additional temporal identity factors have been found to interact with the NuRD complex in other contexts, we propose that these factors might act through this common biochemical process to regulate neurogenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis , Retina/embriología , Factores de Transcripción/metabolismo , Animales , Células Ependimogliales , Ratones , Ratones Noqueados , Proteínas del Grupo Polycomb/metabolismo , Retina/citología
9.
Dev Biol ; 468(1-2): 80-92, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32950463

RESUMEN

The interplay between signaling molecules and transcription factors during retinal development is key to controlling the correct number of retinal cell types. Zeb2 (Sip1) is a zinc-finger multidomain transcription factor that plays multiple roles in central and peripheral nervous system development. Haploinsufficiency of ZEB2 causes Mowat-Wilson syndrome, a congenital disease characterized by intellectual disability, epilepsy and Hirschsprung disease. In the developing retina, Zeb2 is required for generation of horizontal cells and the correct number of interneurons; however, its potential function in controlling gliogenic versus neurogenic decisions remains unresolved. Here we present cellular and molecular evidence of the inhibition of Müller glia cell fate by Zeb2 in late stages of retinogenesis. Unbiased transcriptomic profiling of control and Zeb2-deficient early-postnatal retina revealed that Zeb2 functions in inhibiting Id1/2/4 and Hes1 gene expression. These neural progenitor factors normally inhibit neural differentiation and promote Müller glia cell fate. Chromatin immunoprecipitation (ChIP) supported direct regulation of Id1 by Zeb2 in the postnatal retina. Reporter assays and ChIP analyses in differentiating neural progenitors provided further evidence that Zeb2 inhibits Id1 through inhibition of Smad-mediated activation of Id1 transcription. Together, the results suggest that Zeb2 promotes the timely differentiation of retinal interneurons at least in part by repressing BMP-Smad/Notch target genes that inhibit neurogenesis. These findings show that Zeb2 integrates extrinsic cues to regulate the balance between neuronal and glial cell types in the developing murine retina.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Células Ependimogliales/metabolismo , Interneuronas/metabolismo , Retina/embriología , Transducción de Señal , Proteínas Smad/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Ratones , Ratones Transgénicos , Proteínas Smad/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética
10.
Nat Commun ; 11(1): 3328, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620864

RESUMEN

Genes encoding cell-surface proteins control nervous system development and are implicated in neurological disorders. These genes produce alternative mRNA isoforms which remain poorly characterized, impeding understanding of how disease-associated mutations cause pathology. Here we introduce a strategy to define complete portfolios of full-length isoforms encoded by individual genes. Applying this approach to neural cell-surface molecules, we identify thousands of unannotated isoforms expressed in retina and brain. By mass spectrometry we confirm expression of newly-discovered proteins on the cell surface in vivo. Remarkably, we discover that the major isoform of a retinal degeneration gene, CRB1, was previously overlooked. This CRB1 isoform is the only one expressed by photoreceptors, the affected cells in CRB1 disease. Using mouse mutants, we identify a function for this isoform at photoreceptor-glial junctions and demonstrate that loss of this isoform accelerates photoreceptor death. Therefore, our isoform identification strategy enables discovery of new gene functions relevant to disease.


Asunto(s)
Variación Genética , Proteínas de la Membrana/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Isoformas de ARN/genética , Retina/metabolismo , Degeneración Retiniana/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Isoformas de ARN/metabolismo , Retina/citología , Retina/crecimiento & desarrollo , Degeneración Retiniana/metabolismo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
11.
Dev Cell ; 53(4): 473-491.e9, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32386599

RESUMEN

The development of single-cell RNA sequencing (scRNA-seq) has allowed high-resolution analysis of cell-type diversity and transcriptional networks controlling cell-fate specification. To identify the transcriptional networks governing human retinal development, we performed scRNA-seq analysis on 16 time points from developing retina as well as four early stages of retinal organoid differentiation. We identified evolutionarily conserved patterns of gene expression during retinal progenitor maturation and specification of all seven major retinal cell types. Furthermore, we identified gene-expression differences between developing macula and periphery and between distinct populations of horizontal cells. We also identified species-specific patterns of gene expression during human and mouse retinal development. Finally, we identified an unexpected role for ATOH7 expression in regulation of photoreceptor specification during late retinogenesis. These results provide a roadmap to future studies of human retinal development and may help guide the design of cell-based therapies for treating retinal dystrophies.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Evolución Biológica , Regulación del Desarrollo de la Expresión Génica , Organogénesis , Retina/citología , Células Fotorreceptoras Retinianas Conos/metabolismo , Análisis de la Célula Individual/métodos , Anciano de 80 o más Años , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Femenino , Humanos , Ratones , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Especificidad de la Especie
12.
Nat Commun ; 11(1): 137, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919425

RESUMEN

Public archives of next-generation sequencing data are growing exponentially, but the difficulty of marshaling this data has led to its underutilization by scientists. Here, we present ASCOT, a resource that uses annotation-free methods to rapidly analyze and visualize splice variants across tens of thousands of bulk and single-cell data sets in the public archive. To demonstrate the utility of ASCOT, we identify novel cell type-specific alternative exons across the nervous system and leverage ENCODE and GTEx data sets to study the unique splicing of photoreceptors. We find that PTBP1 knockdown and MSI1 and PCBP2 overexpression are sufficient to activate many photoreceptor-specific exons in HepG2 liver cancer cells. This work demonstrates how large-scale analysis of public RNA-Seq data sets can yield key insights into cell type-specific control of RNA splicing and underscores the importance of considering both annotated and unannotated splicing events.


Asunto(s)
Empalme Alternativo/genética , Biología Computacional/métodos , Análisis de Datos , Células Fotorreceptoras/citología , Sitios de Empalme de ARN/genética , Animales , Línea Celular Tumoral , Expresión Génica/genética , Células Hep G2 , Ribonucleoproteínas Nucleares Heterogéneas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Hepáticas/genética , Ratones , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Proteína de Unión al Tracto de Polipirimidina/genética , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética , Retina/citología , Análisis de Secuencia de ARN/métodos
13.
Front Cell Dev Biol ; 8: 608112, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33634099

RESUMEN

Interkinetic nuclear migration (IKNM) is the process in which pseudostratified epithelial nuclei oscillate from the apical to basal surface and in phase with the mitotic cycle. In the zebrafish retina, neuroepithelial retinal progenitor cells (RPCs) increase Notch activity with apical movement of the nuclei, and the depth of nuclear migration correlates with the probability that the next cell division will be neurogenic. This study focuses on the mechanisms underlying the relationships between IKNM, cell signaling, and neurogenesis. In particular, we have explored the role IKNM has on endosome biology within RPCs. Through genetic manipulation and live imaging in zebrafish, we find that early (Rab5-positive) and recycling (Rab11a-positive) endosomes polarize in a dynamic fashion within RPCs and with reference to nuclear position. Functional analyses suggest that dynamic polarization of recycling endosomes and their activity within the neuroepithelia modulates the subcellular localization of Crb2a, consequently affecting multiple signaling pathways that impact neurogenesis including Notch, Hippo, and Wnt activities. As nuclear migration is heterogenous and asynchronous among RPCs, Rab11a-affected signaling within the neuroepithelia is modulated in a differential manner, providing mechanistic insight to the correlation of IKNM and selection of RPCs to undergo neurogenesis.

14.
Cell Syst ; 8(5): 395-411.e8, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121116

RESUMEN

Analysis of gene expression in single cells allows for decomposition of cellular states as low-dimensional latent spaces. However, the interpretation and validation of these spaces remains a challenge. Here, we present scCoGAPS, which defines latent spaces from a source single-cell RNA-sequencing (scRNA-seq) dataset, and projectR, which evaluates these latent spaces in independent target datasets via transfer learning. Application of developing mouse retina to scRNA-Seq reveals intrinsic relationships across biological contexts and assays while avoiding batch effects and other technical features. We compare the dimensions learned in this source dataset to adult mouse retina, a time-course of human retinal development, select scRNA-seq datasets from developing brain, chromatin accessibility data, and a murine-cell type atlas to identify shared biological features. These tools lay the groundwork for exploratory analysis of scRNA-seq data via latent space representations, enabling a shift in how we compare and identify cells beyond reliance on marker genes or ensemble molecular identity.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Animales , Bases de Datos Genéticas , Femenino , Humanos , Aprendizaje Automático , Masculino , Ratones , Ratones Transgénicos , Retina/embriología , Programas Informáticos , Transcriptoma/genética , Secuenciación del Exoma/métodos
15.
Neuron ; 102(6): 1111-1126.e5, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31128945

RESUMEN

Precise temporal control of gene expression in neuronal progenitors is necessary for correct regulation of neurogenesis and cell fate specification. However, the cellular heterogeneity of the developing CNS has posed a major obstacle to identifying the gene regulatory networks that control these processes. To address this, we used single-cell RNA sequencing to profile ten developmental stages encompassing the full course of retinal neurogenesis. This allowed us to comprehensively characterize changes in gene expression that occur during initiation of neurogenesis, changes in developmental competence, and specification and differentiation of each major retinal cell type. We identify the NFI transcription factors (Nfia, Nfib, and Nfix) as selectively expressed in late retinal progenitor cells and show that they control bipolar interneuron and Müller glia cell fate specification and promote proliferative quiescence.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Retina/embriología , Neuronas Retinianas/metabolismo , Animales , Proliferación Celular/genética , Células Ependimogliales/metabolismo , Interneuronas/metabolismo , Ratones , Mitosis/genética , Factores de Transcripción NFI/genética , RNA-Seq , Retina/crecimiento & desarrollo , Retina/metabolismo , Análisis de la Célula Individual
16.
Nat Methods ; 15(5): 330-338, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29638227

RESUMEN

A key component of efforts to address the reproducibility crisis in biomedical research is the development of rigorously validated and renewable protein-affinity reagents. As part of the US National Institutes of Health (NIH) Protein Capture Reagents Program (PCRP), we have generated a collection of 1,406 highly validated immunoprecipitation- and/or immunoblotting-grade mouse monoclonal antibodies (mAbs) to 737 human transcription factors, using an integrated production and validation pipeline. We used HuProt human protein microarrays as a primary validation tool to identify mAbs with high specificity for their cognate targets. We further validated PCRP mAbs by means of multiple experimental applications, including immunoprecipitation, immunoblotting, chromatin immunoprecipitation followed by sequencing (ChIP-seq), and immunohistochemistry. We also conducted a meta-analysis that identified critical variables that contribute to the generation of high-quality mAbs. All validation data, protocols, and links to PCRP mAb suppliers are available at http://proteincapture.org.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Análisis por Matrices de Proteínas/métodos , Factores de Transcripción/metabolismo , Animales , Clonación Molecular , Bases de Datos Factuales , Femenino , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Reproducibilidad de los Resultados
17.
Development ; 145(9)2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29650591

RESUMEN

Precise control of the relative ratio of retinal neurons and glia generated during development is essential for visual function. We show that Lhx2, which encodes a LIM-homeodomain transcription factor essential for specification and differentiation of retinal Müller glia, also plays a crucial role in the development of retinal neurons. Overexpression of Lhx2 with its transcriptional co-activator Ldb1 triggers cell cycle exit and inhibits both Notch signaling and retinal gliogenesis. Lhx2/Ldb1 overexpression also induces the formation of wide-field amacrine cells (wfACs). In contrast, Rnf12, which encodes a negative regulator of LDB1, is necessary for the initiation of retinal gliogenesis. We also show that Lhx2-dependent neurogenesis and wfAC formation requires Ascl1 and Neurog2, and that Lhx2 is necessary for their expression, although overexpression of Lhx2/Ldb1 does not elevate expression of these proneural bHLH factors. Finally, we demonstrate that the relative level of the LHX2-LDB1 complex in the retina decreases in tandem with the onset of gliogenesis. These findings show that control of Lhx2 function by Ldb1 and Rnf12 underpins the coordinated differentiation of neurons and Müller glia in postnatal retina.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Ependimogliales/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Neurogénesis/fisiología , Neuronas Retinianas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/genética , Células Ependimogliales/citología , Proteínas con Dominio LIM/genética , Proteínas con Homeodominio LIM/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas Retinianas/citología , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética
18.
Adv Exp Med Biol ; 1008: 253-282, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28815543

RESUMEN

The diversity of lncRNAs has expanded within mammals in tandem with the evolution of increased brain complexity, suggesting that lncRNAs play an integral role in this process. In this chapter, we will highlight the identification and characterization of lncRNAs in nervous system development. We discuss the potential role of lncRNAs in nervous system and brain evolution, along with efforts to create comprehensive catalogues that analyze spatial and temporal changes in lncRNA expression during nervous system development. Additionally, we focus on recent endeavors that attempt to assign function to lncRNAs during nervous system development. We highlight discrepancies that have been observed between in vitro and in vivo studies of lncRNA function and the challenges facing researchers in conducting mechanistic analyses of lncRNAs in the developing nervous system. Altogether, this chapter highlights the emerging role of lncRNAs in the developing brain and sheds light on novel, RNA-mediated mechanisms by which nervous system development is controlled.


Asunto(s)
Encéfalo/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , ARN Largo no Codificante , Animales , Humanos , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética
19.
Dev Biol ; 424(2): 221-235, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28263766

RESUMEN

Sonic hedgehog (SHH) is a master developmental regulator. In 1995, the SHH crystal structure predicted that SHH-E176 (human)/E177 (mouse) regulates signaling through a Zn2+-dependent mechanism. While Zn2+ is known to be required for SHH protein stability, a regulatory role for SHH-E176 or Zn2+ has not been described. Here, we show that SHH-E176/177 modulates Zn2+-dependent cross-linking in vitro and is required for endogenous signaling, in vivo. While ectopically expressed SHH-E176A is highly active, mice expressing SHH-E177A at endogenous sites (ShhE177A/-) are morphologically indistinguishable from mice lacking SHH (Shh-/-), with patterning defects in both embryonic spinal cord and forebrain. SHH-E177A distribution along the embryonic spinal cord ventricle is unaltered, suggesting that E177 does not control long-range transport. While SHH-E177A association with cilia basal bodies increases in embryonic ventral spinal cord, diffusely distributed SHH-E177A is not detected. Together, these results reveal a novel role for E177-Zn2+ in regulating SHH signaling that may involve critical, cilia basal-body localized changes in cross-linking and/or conformation.


Asunto(s)
Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Transducción de Señal , Zinc/química , Animales , Anticuerpos/química , Anticuerpos/metabolismo , Especificidad de Anticuerpos/inmunología , Cuerpos Basales/efectos de los fármacos , Cuerpos Basales/metabolismo , Secuencia de Bases , Cilios/efectos de los fármacos , Cilios/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Humanos , Ratones , Prosencéfalo/efectos de los fármacos , Prosencéfalo/enzimología , Prosencéfalo/metabolismo , Conformación Proteica , Multimerización de Proteína/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/embriología , Médula Espinal/metabolismo , Zinc/farmacología
20.
Development ; 143(21): 3994-4002, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27633990

RESUMEN

Fibroblast growth factor (FGF) signaling is an essential regulator of lens epithelial cell proliferation and survival, as well as lens fiber cell differentiation. However, the identities of these FGF factors, their source tissue and the genes that regulate their synthesis are unknown. We have found that Chx10-Cre;Lhx2lox/lox mice, which selectively lack Lhx2 expression in neuroretina from E10.5, showed an early arrest in lens fiber development along with severe microphthalmia. These mutant animals showed reduced expression of multiple neuroretina-expressed FGFs and canonical FGF-regulated genes in neuroretina. When FGF expression was genetically restored in Lhx2-deficient neuroretina of Chx10-Cre;Lhx2lox/lox mice, we observed a partial but nonetheless substantial rescue of the defects in lens cell proliferation, survival and fiber differentiation. These data demonstrate that neuroretinal expression of Lhx2 and neuroretina-derived FGF factors are crucial for lens fiber development in vivo.


Asunto(s)
Factores de Crecimiento de Fibroblastos/genética , Proteínas con Homeodominio LIM/fisiología , Cristalino/embriología , Organogénesis/genética , Neuronas Retinianas/fisiología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular/genética , Embrión de Mamíferos , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas con Homeodominio LIM/genética , Cristalino/metabolismo , Ratones , Ratones Transgénicos , Microftalmía/embriología , Microftalmía/genética , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Neuronas Retinianas/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...