Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 697: 108711, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33271148

RESUMEN

Substantial variation in relaxation rate exists among cardiomyocytes within small volumes of myocardium; however, it is unknown how this variability affects the overall relaxation mechanics of heart muscle. In this study, we sought to modulate levels of cellular heterogeneity in a computational model, then validate those predictions using an engineered heart tissue platform. We formulated an in silico tissue model composed of half-sarcomeres with varied relaxation rates, incorporating single-cell cardiomyocyte experimental data. These model tissues randomly sampled relaxation parameters from two offset distributions of fast- and slow-relaxing populations of half-sarcomeres. Isometric muscle twitch simulations predicted a complex relationship between relaxation time and the proportion of fast-versus slow-relaxing cells in heterogeneous tissues. Specifically, a 50/50 mixture of fast and slow cells did not lead to relaxation time that was the mean of the relaxation times associated with the two pure cases. Rather, the mean relaxation time was achieved at a ratio of 70:30 slow:fast relaxing cells, suggesting a disproportionate impact of fast-relaxing cells on overall tissue relaxation. To examine whether this behavior persists in vitro, we constructed engineered heart tissues from two lines of fast- and slow-relaxing human iPSC-derived cardiomyocytes. Cell tracking via fluorescent nanocrystals confirmed the presence of both cell populations in the 50/50 mixed tissues at the time of mechanical characterization. Isometric muscle twitch relaxation times of these mixed-population engineered heart tissues showed agreement with the predictions from the model, namely that the measured relaxation rate of 50/50 mixed tissues more closely resembled that of tissues made with 100% fast-relaxing cells. Our observations suggest that cardiomyocyte diversity can play an important role in determining tissue-level relaxation.


Asunto(s)
Modelos Cardiovasculares , Relajación Muscular , Miocitos Cardíacos/metabolismo , Cinética , Miocitos Cardíacos/citología , Ingeniería de Tejidos
2.
Cell Stem Cell ; 26(2): 251-261.e8, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31956039

RESUMEN

Vascular smooth muscle cells (VSMCs) can be derived in large numbers from human induced pluripotent stem cells (hiPSCs) for producing tissue-engineered vascular grafts (TEVGs). However, hiPSC-derived TEVGs are hampered by low mechanical strength and significant radial dilation after implantation. Here, we report generation of hiPSC-derived TEVGs with mechanical strength comparable to native vessels used in arterial bypass grafts by utilizing biodegradable scaffolds, incremental pulsatile stretching, and optimal culture conditions. Following implantation into a rat aortic model, hiPSC-derived TEVGs show excellent patency without luminal dilation and effectively maintain mechanical and contractile function. This study provides a foundation for future production of non-immunogenic, cellularized hiPSC-derived TEVGs composed of allogenic vascular cells, potentially serving needs to a considerable number of patients whose dysfunctional vascular cells preclude TEVG generation via other methods.


Asunto(s)
Prótesis Vascular , Células Madre Pluripotentes Inducidas , Humanos , Miocitos del Músculo Liso , Ingeniería de Tejidos
3.
Biophys J ; 117(7): 1258-1268, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31537313

RESUMEN

Isolated ventricular cardiomyocytes exhibit substantial cell-to-cell variability, even when obtained from the same small volume of myocardium. In this study, we investigated the possibility that cardiomyocyte responses to ß-adrenergic stimulus are also highly heterogeneous. To achieve the throughput and measurement duration desired for these experiments, we designed and validated a novel microwell system that immobilizes and uniformly orients isolated adult cardiomyocytes. In this configuration, detailed drug responses of dozens of cells can be followed for intervals exceeding 1 h. At the conclusion of an experiment, specific cells can also be harvested via a precision aspirator for single-cell gene expression profiling. Using this system, we followed changes in Ca2+ signaling and contractility of individual cells under sustained application of either dobutamine or omecamtiv mecarbil. Both compounds increased average cardiomyocyte contractility over the course of an hour, but responses of individual cells to dobutamine were significantly more variable. Surprisingly, some dobutamine-treated cardiomyocytes augmented Ca2+ release without increasing contractility. Other cells responded with increased contractility despite unchanged Ca2+ release. Single-cell gene expression analysis revealed significant co-expression of ß-adrenergic pathway genes PKA regulatory subunit type I, PKA regulatory subunit type II, and Ca2+/calmodulin-dependent protein kinase II across cardiomyocytes. Other data supported a connection between the effects of dobutamine on relaxation rate and the expression of protein phosphatase 2. These findings suggest that variable drug responses among cells are not merely experimental artifacts. By enabling direct comparison of the functional behavior of an individual cell and the genes it expresses, this new system constitutes a unique tool for interrogating cardiomyocyte drug responses and discovering the genes that modulate them.


Asunto(s)
Separación Celular/instrumentación , Dobutamina/farmacología , Microtecnología/instrumentación , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Animales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , Procesos Estocásticos
4.
J Physiol ; 597(3): 711-722, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30315728

RESUMEN

KEY POINTS: Prior studies have shown variation in the functional properties of cardiomyocytes isolated from different regions of the left ventricular myocardium. We found that these region-dependent variations vanish below a tissue volume of ∼7 mm3 in the adult rat myocardium, revealing a fixed level of intrinsic relaxation rate heterogeneity that is independent of tissue volume. Within these microscopically varying cell populations, fast-relaxing cells were shown to have elevated phosphorylated troponin I compared to slow-relaxing cells. Relaxation rate was also correlated with cardiomyocyte length, in that slow-relaxing cells were longer than fast-relaxing cells. These results show a new relationship between cardiomyocyte morphology and myofilament relaxation, and suggest that functional diversity among individual myocytes at the microscale may contribute to bulk relaxation of the myocardium. ABSTRACT: The mean contractility and calcium handling properties of cardiomyocytes isolated from different regions of the ventricular myocardium are known to vary significantly. We designed experiments to quantify the variance in contractile properties among cells within the same myocardial region. Longitudinal strips of myocardial tissue were excised from the epicardial left ventricular free walls of adult Sprague-Dawley rats and then treated with collagenase to isolate individual myocytes. Cardiomyocytes were characterized by measuring sarcomere length changes and calcium transients during electrical pacing. Variance of the time from peak sarcomere shortening to 50% re-lengthening (RT50 ) was assessed in each cell population. Isolating cells from progressively shorter strips allowed an estimate of the myocardial volume below which regional variation vanished and only microscale heterogeneity remained (∼7 mm3 ). The SD of RT50 within this myocardial volume was 28% of the mean. In a series of follow-up experiments, RT50 was shown to correlate significantly with resting myocyte length, suggesting a connection between cell morphology and intrinsic relaxation behaviour. To explore the mechanistic basis of varying RT50 , a novel single-cell aspirator was employed to collect small batches of cardiomyocytes grouped according to their relaxation rates (fast or slow). Western blot analysis of the two groups revealed significantly elevated troponin I phosphorylation in fast-relaxing cells. Our observations suggest that cell-to-cell heterogeneity of active contractile properties is substantial, with implications for how we understand myocardial relaxation and design drug therapies intended to alter relaxation rate.


Asunto(s)
Relajación Muscular/fisiología , Miocitos Cardíacos/fisiología , Animales , Calcio/metabolismo , Femenino , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley , Sarcómeros/metabolismo , Sarcómeros/fisiología , Troponina I/metabolismo
5.
J Burn Care Res ; 39(4): 562-571, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29901806

RESUMEN

Pressure garments are widely employed for management of postburn scarring. Although pressure magnitude has been linked to efficacy, maintenance of uniform pressure delivery is challenging. An understanding of garment fabric properties is needed to optimize pressure delivery for the duration of garment use. To address this issue, compression vests were manufactured using two commonly used fabrics, Powernet or Dri-Tek Tricot, to achieve 10% reduction in circumference for a child-sized mannequin. Applied pressure was tracked on five anatomical sites over 23 hours, before laundering or after one and five laundering cycles. Load relaxation and fatigue of fabrics were tested before laundering or after one and five laundering cycles, and structural analysis via scanning electron microscopy was performed. Prior to laundering, pressure vests fabricated using Powernet or Dri-Tek Tricot generated a maximum pressure on the mannequin of 20 and 23 mm Hg, respectively. With both fabrics, pressure decreased during daily wear. Following five laundering cycles, Dri-Tek Tricot vests delivered a maximum of 7 vs 15 mm Hg pressure for Powernet at the same site. In cyclic tensile and load relaxation tests, exerted force correlated with fabric weave orientation with greatest force measured parallel to a fabric's long axis. The results demonstrate that Powernet exhibited the greatest applied force with the least garment fatigue. Fabric orientation with respect to the primary direction of tension was a critical factor in pressure generation and maintenance. This study suggests that fabrication of garments using Powernet with its long axis parallel to patient's body part circumference may enhance the magnitude and maintenance of pressure delivery.


Asunto(s)
Quemaduras/terapia , Cicatriz/prevención & control , Vestuario , Lavandería , Niño , Diseño de Equipo , Humanos , Maniquíes , Ensayo de Materiales , Presión , Textiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...