Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neuroimaging ; 33(6): 941-952, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37587544

RESUMEN

BACKGROUND AND PURPOSE: Multicenter study designs involving a variety of MRI scanners have become increasingly common. However, these present the issue of biases in image-based measures due to scanner or site differences. To assess these biases, we imaged 11 volunteers with multiple sclerosis (MS) with scan and rescan data at four sites. METHODS: Images were acquired on Siemens or Philips scanners at 3 Tesla. Automated white matter lesion detection and whole-brain, gray and white matter, and thalamic volumetry were performed, as well as expert manual delineations of T1 magnetization-prepared rapid acquisition gradient echo and T2 fluid-attenuated inversion recovery lesions. Random-effect and permutation-based nonparametric modeling was performed to assess differences in estimated volumes within and across sites. RESULTS: Random-effect modeling demonstrated model assumption violations for most comparisons of interest. Nonparametric modeling indicated that site explained >50% of the variation for most estimated volumes. This expanded to >75% when data from both Siemens and Philips scanners were included. Permutation tests revealed significant differences between average inter- and intrasite differences in most estimated brain volumes (P < .05). The automatic activation of spine coil elements during some acquisitions resulted in a shading artifact in these images. Permutation tests revealed significant differences between thalamic volume measurements from acquisitions with and without this artifact. CONCLUSION: Differences in brain volumetry persisted across MR scanners despite protocol harmonization. These differences were not well explained by variance component modeling; however, statistical innovations for mitigating intersite differences show promise in reducing biases in multicenter studies of MS.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neuroimagen , Sesgo
2.
Ann Neurol ; 94(4): 736-744, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37345334

RESUMEN

OBJECTIVE: To determine early magnetic resonance imaging (MRI) features of new multiple sclerosis (MS) lesions that will develop into paramagnetic rim lesions (PRLs), which have been associated with progressive tissue injury in MS. METHODS: New contrast-enhancing lesions observed on routine clinical MRI were imaged at 7 T within 4 weeks of observation, and 3 and 6 months later. The 6-month MRI was used to classify PRL status (PRL or non-PRL). The relationship between early lesion characteristics and subsequent PRL status was assessed using generalized linear mixed effects models. Random forest classification was performed to classify early predictors of subsequent PRL status. RESULTS: From 93 contrast-enhancing lesions in 23 MS patients, 37 lesions developed into a PRL. In lesions that developed into PRLs compared with those that did not, the average lesion T1 on the initial 7 T MRI was 1994 ms compared with 1,670 ms (p-value <0.001), and the average volume was 168.7 mL compared with 44 mL (p-value <0.001) in lesions that did not. These volume differences were also found on 3 T scans (p-value <0.001), and for intensity-normalized T1 -w (p-value = 0.011) and fluid-attenuated inversion recovery (p-value = 0.005). The area under the receiver operating characteristic curve for the random forest classification with leave-one-out cross-validation was found to be 0.86 using initial 7 T features. INTERPRETATION: New MS lesions that evolve into PRLs can be identified early in lesion evolution. These findings suggest that biological mechanisms underlying PRL development begin early, which has important implications for clinical trials targeting PRLs development and subsequent therapeutics. ANN NEUROL 2023;94:736-744.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Progresión de la Enfermedad , Imagen por Resonancia Magnética/métodos , Encéfalo/patología
3.
J Intellect Disabil ; : 17446295231163263, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36917779

RESUMEN

Previous research has identified UPGRADE Your Performance as a method for teaching employment soft skills to students with disabilities. UPGRADE Your Performance instruction is a multicomponent intervention including self-evaluation, self-graphing, goal setting, and technology-aided instruction. This pilot study investigated the generalized effects of UPGRADE Your Performance on soft skills of secondary students with intellectual and other developmental disabilities participating in an 18-21 transition program located on a university campus. Results indicated that when students improved in two targeted soft skill areas, generalization occurred to three non-targeted soft skill areas. Implications for practice and suggestions for future research are included.

4.
J Neuroimaging ; 33(3): 434-445, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36715449

RESUMEN

BACKGROUND AND PURPOSE: Cortical demyelinated lesions are prevalent in multiple sclerosis (MS), associated with disability, and have recently been incorporated into MS diagnostic criteria. Presently, advanced and ultrahigh-field MRIs-not routinely available in clinical practice-are the most sensitive methods for detection of cortical lesions. Approaches utilizing MRI sequences obtainable in routine clinical practice remain an unmet need. We plan to assess the sensitivity of the ratio of T1 -weighted and T2 -weighted (T1 /T2 ) signal intensity for focal cortical lesions in comparison to other high-field imaging methods. METHODS: 3-Tesla and 7-Tesla MRI collected from 10 adults with MS were included in the study. T1 /T2 images were calculated by dividing 3T T1 -weighted (T1 w) images by 3T T2 -weighted (T2 w) fluid-attenuated inversion recovery images for each participant. A total of 614 cortical lesions were identified using 7T T2 *w and T1 w images and corresponding voxels were assessed on registered 3T images. Signal intensities were compared across 3T imaging sequences, including T1 /T2 , T1 w, T2 w, and inversion recovery susceptibility-weighted imaging with enhanced T2 weighting (IR-SWIET) images. RESULTS: T1 /T2 images demonstrated a larger contrast between median lesional and nonlesional cortical signal intensity (median ratio = 1.29, range: 1.19-1.38) when compared to T1 w (1.01, 0.97-1.10, p < .002), T2 w (1.17, 1.07-1.26, p < .002), and IR-SWIET (1.21, 1.01-1.29, p < .03). CONCLUSION: T1 /T2 images are sensitive to cortical lesions. Approaches incorporating T1 /T2 could improve the accessibility of cortical lesion detection in research settings and clinical practice.


Asunto(s)
Esclerosis Múltiple , Adulto , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Imagen por Resonancia Magnética/métodos
5.
Proteomics ; 8(15): 3030-41, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18618493

RESUMEN

2-D gel electrophoresis has been used for more than three decades to study the protein complement of organisms, tissues, and cells. Three issues are holding back large-scale proteomics studies: low-throughput, high technical variation, and study designs lacking statistical power. We identified image analysis as the central factor connecting these three issues. By developing an improved image analysis workflow we shortened project timelines, decreased technical variation, and thus enabled large-scale proteomics studies that are statistically powered. Rather than detecting protein spots on each gel image and matching spots across gel images, the improved workflow is based on aligning images first, then creating a consensus spot pattern and finally propagating the consensus spot pattern to all gel images for quantitation. This results in a data table without gaps. As an example we show here a study aimed at discovering circulating biomarkers for chronic obstructive pulmonary disease (COPD). Eight candidate biomarkers were identified by comparing plasma from 24 smokers with COPD and 24 smokers without COPD. Among the candidates are proteins such as plasma retinal-binding protein (RETB) and fibrinogen that had previously been linked to the disease and are frequently monitored in COPD patients, as well as other proteins such as apolipoprotein E (ApoE), inter-alpha-trypsininhibitor heavy chain H4 (ITIH4), and glutathione peroxidase.


Asunto(s)
Biomarcadores/sangre , Proteínas Sanguíneas/análisis , Electroforesis en Gel Bidimensional/métodos , Proteómica/métodos , Enfermedad Pulmonar Obstructiva Crónica/sangre , Proteínas Sanguíneas/aislamiento & purificación , Procesamiento de Imagen Asistido por Computador/métodos , Análisis de Componente Principal , Fumar/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA