Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
PLoS One ; 16(7): e0253267, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34228724

RESUMEN

We report a new subgroup of Type III Restriction-Modification systems that use m4C methylation for host protection. Recognition specificities for six such systems, each recognizing a novel motif, have been determined using single molecule real-time DNA sequencing. In contrast to all previously characterized Type III systems which modify adenine to m6A, protective methylation of the host genome in these new systems is achieved by the N4-methylation of a cytosine base in one strand of an asymmetric 4 to 6 base pair recognition motif. Type III systems are heterotrimeric enzyme complexes containing a single copy of an ATP-dependent restriction endonuclease-helicase (Res) and a dimeric DNA methyltransferase (Mod). The Type III Mods are beta-class amino-methyltransferases, examples of which form either N6-methyl adenine or N4-methyl cytosine in Type II RM systems. The Type III m4C Mod and Res proteins are diverged, suggesting ancient origin or that m4C modification has arisen from m6A MTases multiple times in diverged lineages. Two of the systems, from thermophilic organisms, required expression of both Mod and Res to efficiently methylate an E. coli host, unlike previous findings that Mod alone is proficient at modification, suggesting that the division of labor between protective methylation and restriction activities is atypical in these systems. Two of the characterized systems, and many homologous putative systems, appear to include a third protein; a conserved putative helicase/ATPase subunit of unknown function and located 5' of the mod gene. The function of this additional ATPase is not yet known, but close homologs co-localize with the typical Mod and Res genes in hundreds of putative Type III systems. Our findings demonstrate a rich diversity within Type III RM systems.


Asunto(s)
Citosina , Metilación de ADN , Enzimas de Restricción-Modificación del ADN/genética , ADN/metabolismo , Citosina/metabolismo , Metilasas de Modificación del ADN/química , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas de Restricción del ADN/química , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/metabolismo , Enzimas de Restricción-Modificación del ADN/química , Enzimas de Restricción-Modificación del ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Cromatografía de Gases y Espectrometría de Masas , Alineación de Secuencia , Análisis de Secuencia de ADN
2.
Microbiol Resour Announc ; 9(24)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32527783

RESUMEN

Lymphatic filariasis affects ∼120 million people and can result in elephantiasis and hydrocele. Here, we report the nearly complete genome sequence of the best-studied causative agent of lymphatic filariasis, Brugia malayi The assembly contains four autosomes, an X chromosome, and only eight gaps but lacks a contiguous sequence for the known Y chromosome.

3.
Nat Commun ; 11(1): 1964, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32327641

RESUMEN

Sex determination mechanisms often differ even between related species yet the evolution of sex chromosomes remains poorly understood in all but a few model organisms. Some nematodes such as Caenorhabditis elegans have an XO sex determination system while others, such as the filarial parasite Brugia malayi, have an XY mechanism. We present a complete B. malayi genome assembly and define Nigon elements shared with C. elegans, which we then map to the genomes of other filarial species and more distantly related nematodes. We find a remarkable plasticity in sex chromosome evolution with several distinct cases of neo-X and neo-Y formation, X-added regions, and conversion of autosomes to sex chromosomes from which we propose a model of chromosome evolution across different nematode clades. The phylum Nematoda offers a new and innovative system for gaining a deeper understanding of sex chromosome evolution.


Asunto(s)
Evolución Molecular , Nematodos/genética , Infecciones por Nematodos/parasitología , Cromosomas Sexuales/genética , Animales , Brugia Malayi/genética , Caenorhabditis elegans/genética , Mapeo Cromosómico , Femenino , Regulación de la Expresión Génica , Genoma de los Helmintos/genética , Humanos , Masculino , Nematodos/clasificación , Secuencias Repetitivas de Ácidos Nucleicos/genética , Procesos de Determinación del Sexo/genética
5.
Genet Med ; 21(9): 2092-2102, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30733599

RESUMEN

PURPOSE: To demonstrate the utility of an amplification-free long-read sequencing method to characterize the Fuchs endothelial corneal dystrophy (FECD)-associated intronic TCF4 triplet repeat (CTG18.1). METHODS: We applied an amplification-free method, utilizing the CRISPR/Cas9 system, in combination with PacBio single-molecule real-time (SMRT) long-read sequencing, to study CTG18.1. FECD patient samples displaying a diverse range of CTG18.1 allele lengths and zygosity status (n = 11) were analyzed. A robust data analysis pipeline was developed to effectively filter, align, and interrogate CTG18.1-specific reads. All results were compared with conventional polymerase chain reaction (PCR)-based fragment analysis. RESULTS: CRISPR-guided SMRT sequencing of CTG18.1 provided accurate genotyping information for all samples and phasing was possible for 18/22 alleles sequenced. Repeat length instability was observed for all expanded (≥50 repeats) phased CTG18.1 alleles analyzed. Furthermore, higher levels of repeat instability were associated with increased CTG18.1 allele length (mode length ≥91 repeats) indicating that expanded alleles behave dynamically. CONCLUSION: CRISPR-guided SMRT sequencing of CTG18.1 has revealed novel insights into CTG18.1 length instability. Furthermore, this study provides a framework to improve the molecular diagnostic accuracy for CTG18.1-mediated FECD, which we anticipate will become increasingly important as gene-directed therapies are developed for this common age-related and sight threatening disease.


Asunto(s)
Distrofia Endotelial de Fuchs/genética , Predisposición Genética a la Enfermedad , Factor de Transcripción 4/genética , Expansión de Repetición de Trinucleótido/genética , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Sistemas CRISPR-Cas/genética , Femenino , Distrofia Endotelial de Fuchs/patología , Genotipo , Humanos , Intrones/genética , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN , Imagen Individual de Molécula , Repeticiones de Trinucleótidos/genética
6.
Nat Commun ; 9(1): 3676, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30201986

RESUMEN

Current methods for genome-wide analysis of gene expression require fragmentation of original transcripts into small fragments for short-read sequencing. In bacteria, the resulting fragmented information hides operon complexity. Additionally, in vivo processing of transcripts confounds the accurate identification of the 5' and 3' ends of operons. Here we develop a methodology called SMRT-Cappable-seq that combines the isolation of un-fragmented primary transcripts with single-molecule long read sequencing. Applied to E. coli, this technology results in an accurate definition of the transcriptome with 34% of known operons from RegulonDB being extended by at least one gene. Furthermore, 40% of transcription termination sites have read-through that alters the gene content of the operons. As a result, most of the bacterial genes are present in multiple operon variants reminiscent of eukaryotic splicing. By providing such granularity in the operon structure, this study represents an important resource for the study of prokaryotic gene network and regulation.


Asunto(s)
Escherichia coli/genética , Genoma Bacteriano , Operón , Análisis de Secuencia de ARN/métodos , Transcriptoma , Secuencias de Aminoácidos , Mapeo Cromosómico , ADN Complementario/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Genómica , Regiones Promotoras Genéticas , Transcripción Genética
7.
Hum Mutat ; 39(9): 1262-1272, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29932473

RESUMEN

Amplification of DNA is required as a mandatory step during library preparation in most targeted sequencing protocols. This can be a critical limitation when targeting regions that are highly repetitive or with extreme guanine-cytosine (GC) content, including repeat expansions associated with human disease. Here, we used an amplification-free protocol for targeted enrichment utilizing the CRISPR/Cas9 system (No-Amp Targeted sequencing) in combination with single molecule, real-time (SMRT) sequencing for studying repeat elements in the huntingtin (HTT) gene, where an expanded CAG repeat is causative for Huntington disease. We also developed a robust data analysis pipeline for repeat element analysis that is independent of alignment of reads to a reference genome. The method was applied to 11 diagnostic blood samples, and for all 22 alleles the resulting CAG repeat count agreed with previous results based on fragment analysis. The amplification-free protocol also allowed for studying somatic variability of repeat elements in our samples, without the interference of PCR stutter. In summary, with No-Amp Targeted sequencing in combination with our analysis pipeline, we could accurately study repeat elements that are difficult to investigate using PCR-based methods.


Asunto(s)
Genoma Humano/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Expansión de Repetición de Trinucleótido/genética , Alelos , Ataxina-10/genética , Proteína C9orf72/genética , Sistemas CRISPR-Cas/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedad de Huntington/patología , ARN Guía de Kinetoplastida/genética , Análisis de Secuencia de ADN
8.
Cell Syst ; 6(2): 245-255.e5, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29396323

RESUMEN

The human transcriptome is so large, diverse, and dynamic that, even after a decade of investigation by RNA sequencing (RNA-seq), we have yet to resolve its true dimensions. RNA-seq suffers from an expression-dependent bias that impedes characterization of low-abundance transcripts. We performed targeted single-molecule and short-read RNA-seq to survey the transcriptional landscape of a single human chromosome (Hsa21) at unprecedented resolution. Our analysis reaches the lower limits of the transcriptome, identifying a fundamental distinction between protein-coding and noncoding gene content: almost every noncoding exon undergoes alternative splicing, producing a seemingly limitless variety of isoforms. Analysis of syntenic regions of the mouse genome shows that few noncoding exons are shared between human and mouse, yet human splicing profiles are recapitulated on Hsa21 in mouse cells, indicative of regulation by a deeply conserved splicing code. We propose that noncoding exons are functionally modular, with alternative splicing generating an enormous repertoire of potential regulatory RNAs and a rich transcriptional reservoir for gene evolution.


Asunto(s)
Empalme Alternativo/fisiología , Exones/genética , Análisis de Secuencia de ARN/métodos , Empalme Alternativo/genética , Animales , Secuencia de Bases/genética , Cromosomas Humanos Par 21/genética , Cromosomas de los Mamíferos/genética , Bases de Datos Genéticas , Evolución Molecular , Exones/fisiología , Perfilación de la Expresión Génica/métodos , Genoma/genética , Humanos , Ratones , Empalme del ARN/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Análisis de la Célula Individual , Transcriptoma
9.
Sci Rep ; 7(1): 16140, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29170397

RESUMEN

The Helicobacter pylori phase variable gene modH, typified by gene HP1522 in strain 26695, encodes a N6-adenosine type III DNA methyltransferase. Our previous studies identified multiple strain-specific modH variants (modH1 - modH19) and showed that phase variation of modH5 in H. pylori P12 influenced expression of motility-associated genes and outer membrane protein gene hopG. However, the ModH5 DNA recognition motif and the mechanism by which ModH5 controls gene expression were unknown. Here, using comparative single molecule real-time sequencing, we identify the DNA site methylated by ModH5 as 5'-Gm6ACC-3'. This motif is vastly underrepresented in H. pylori genomes, but overrepresented in a number of virulence genes, including motility-associated genes, and outer membrane protein genes. Motility and the number of flagella of H. pylori P12 wild-type were significantly higher than that of isogenic modH5 OFF or ΔmodH5 mutants, indicating that phase variable switching of modH5 expression plays a role in regulating H. pylori motility phenotypes. Using the flagellin A (flaA) gene as a model, we show that ModH5 modulates flaA promoter activity in a GACC methylation-dependent manner. These findings provide novel insights into the role of ModH5 in gene regulation and how it mediates epigenetic regulation of H. pylori motility.


Asunto(s)
Proteínas Bacterianas/metabolismo , Helicobacter pylori/metabolismo , Proteínas Bacterianas/genética , Epigénesis Genética/genética , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Helicobacter pylori/genética
10.
Genome Announc ; 5(21)2017 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-28546484

RESUMEN

Moraxella catarrhalis is an important bacterial pathogen that causes otitis media and exacerbations of chronic obstructive pulmonary disease. Here, we report the complete genome sequence of M. catarrhalis strain CCRI-195ME, which contains the phase-variable epigenetic regulator ModM3.

11.
Methods Mol Biol ; 1512: 199-210, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27885609

RESUMEN

Methylation has a profound role in the regulation of numerous biological processes in bacteria including virulence. The study of methylation in bacteria has greatly advanced thanks to next-generation sequencing technologies. These technologies have expedited the process of uncovering unique features of many bacterial methylomes such as characterizing previously uncharacterized methyltransferases, cataloging genome-wide DNA methylations in bacteria, identifying the frequency of methylation at particular genomic loci, and revealing regulatory roles of methylation in the biology of various bacterial species. For instance, methylation has been cited as a potential source for the pathogenicity differences observed in C. jejuni strains with syntenic genomes as seen in recent publications. Here, we describe the methodology for the use of Pacific Biosciences' single molecule real-time (SMRT) sequencing for detecting methylation patterns in C. jejuni and bioinformatics tools to profile its methylome.


Asunto(s)
Campylobacter jejuni/metabolismo , Biología Computacional/métodos , ADN Bacteriano/metabolismo , Epigénesis Genética , Genoma Bacteriano , Análisis de Secuencia de ADN/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/patogenicidad , Metilación de ADN , ADN Bacteriano/genética , Expresión Génica , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Virulencia
12.
Nucleic Acids Res ; 44(19): 9413-9425, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27580720

RESUMEN

We identify a new subgroup of Type I Restriction-Modification enzymes that modify cytosine in one DNA strand and adenine in the opposite strand for host protection. Recognition specificity has been determined for ten systems using SMRT sequencing and each recognizes a novel DNA sequence motif. Previously characterized Type I systems use two identical copies of a single methyltransferase (MTase) subunit, with one bound at each half site of the specificity (S) subunit to form the MTase. The new m4C-producing Type I systems we describe have two separate yet highly similar MTase subunits that form a heterodimeric M1M2S MTase. The MTase subunits from these systems group into two families, one of which has NPPF in the highly conserved catalytic motif IV and modifies adenine to m6A, and one having an NPPY catalytic motif IV and modifying cytosine to m4C. The high degree of similarity among their cytosine-recognizing components (MTase and S) suggest they have recently evolved, most likely from the far more common m6A Type I systems. Type I enzymes that modify cytosine exclusively were formed by replacing the adenine target recognition domain (TRD) with a cytosine-recognizing TRD. These are the first examples of m4C modification in Type I RM systems.


Asunto(s)
Citosina/metabolismo , Enzimas de Restricción-Modificación del ADN/metabolismo , ADN/metabolismo , Adenina/metabolismo , Secuencia de Aminoácidos , Catálisis , Biología Computacional/métodos , ADN/química , Enzimas de Restricción-Modificación del ADN/química , Enzimas de Restricción-Modificación del ADN/genética , Metilación , Metiltransferasas/química , Metiltransferasas/metabolismo , Mutación , Motivos de Nucleótidos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Especificidad por Sustrato
13.
Nat Commun ; 7: 11708, 2016 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-27339440

RESUMEN

Zea mays is an important genetic model for elucidating transcriptional networks. Uncertainties about the complete structure of mRNA transcripts limit the progress of research in this system. Here, using single-molecule sequencing technology, we produce 111,151 transcripts from 6 tissues capturing ∼70% of the genes annotated in maize RefGen_v3 genome. A large proportion of transcripts (57%) represent novel, sometimes tissue-specific, isoforms of known genes and 3% correspond to novel gene loci. In other cases, the identified transcripts have improved existing gene models. Averaging across all six tissues, 90% of the splice junctions are supported by short reads from matched tissues. In addition, we identified a large number of novel long non-coding RNAs and fusion transcripts and found that DNA methylation plays an important role in generating various isoforms. Our results show that characterization of the maize B73 transcriptome is far from complete, and that maize gene expression is more complex than previously thought.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Zea mays/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ARN/métodos
14.
PLoS Genet ; 12(2): e1005854, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26870957

RESUMEN

DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities of 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active 'orphan' MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.


Asunto(s)
Epigenómica , Células Procariotas/metabolismo , Secuencia Conservada , Metilación de ADN/genética , Replicación del ADN/genética , Enzimas de Restricción-Modificación del ADN/clasificación , Enzimas de Restricción-Modificación del ADN/metabolismo , Evolución Molecular , Regulación de la Expresión Génica , Genoma , Metiltransferasas/metabolismo , Anotación de Secuencia Molecular , Familia de Multigenes , Motivos de Nucleótidos/genética , Filogenia , Especificidad por Sustrato
15.
PLoS One ; 10(12): e0144612, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26656597

RESUMEN

The Gram-negative bacterium Neisseria meningitidis features extensive genetic variability. To present, proposed virulence genotypes are also detected in isolates from asymptomatic carriers, indicating more complex mechanisms underlying variable colonization modes of N. meningitidis. We applied the Single Molecule, Real-Time (SMRT) sequencing method from Pacific Biosciences to assess the genome-wide DNA modification profiles of two genetically related N. meningitidis strains, both of serogroup A. The resulting DNA methylomes revealed clear divergences, represented by the detection of shared and of strain-specific DNA methylation target motifs. The positional distribution of these methylated target sites within the genomic sequences displayed clear biases, which suggest a functional role of DNA methylation related to the regulation of genes. DNA methylation in N. meningitidis has a likely underestimated potential for variability, as evidenced by a careful analysis of the ORF status of a panel of confirmed and predicted DNA methyltransferase genes in an extended collection of N. meningitidis strains of serogroup A. Based on high coverage short sequence reads, we find phase variability as a major contributor to the variability in DNA methylation. Taking into account the phase variable loci, the inferred functional status of DNA methyltransferase genes matched the observed methylation profiles. Towards an elucidation of presently incompletely characterized functional consequences of DNA methylation in N. meningitidis, we reveal a prominent colocalization of methylated bases with Single Nucleotide Polymorphisms (SNPs) detected within our genomic sequence collection. As a novel observation we report increased mutability also at 6mA methylated nucleotides, complementing mutational hotspots previously described at 5mC methylated nucleotides. These findings suggest a more diverse role of DNA methylation and Restriction-Modification (RM) systems in the evolution of prokaryotic genomes.


Asunto(s)
ADN Bacteriano/metabolismo , Epigénesis Genética , Genoma Bacteriano , Mutación , Neisseria meningitidis/genética , Neisseria meningitidis/patogenicidad , Adenina/metabolismo , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN Bacteriano/genética , Expresión Génica , Infecciones Meningocócicas/microbiología , Infecciones Meningocócicas/patología , Datos de Secuencia Molecular , Neisseria meningitidis/metabolismo , Motivos de Nucleótidos , Polimorfismo de Nucleótido Simple , Alineación de Secuencia , Análisis de Secuencia de ADN/métodos , Serogrupo , Virulencia
16.
Nat Commun ; 6: 7828, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26215614

RESUMEN

Non-typeable Haemophilus influenzae contains an N(6)-adenine DNA-methyltransferase (ModA) that is subject to phase-variable expression (random ON/OFF switching). Five modA alleles, modA2, modA4, modA5, modA9 and modA10, account for over two-thirds of clinical otitis media isolates surveyed. Here, we use single molecule, real-time (SMRT) methylome analysis to identify the DNA-recognition motifs for all five of these modA alleles. Phase variation of these alleles regulates multiple proteins including vaccine candidates, and key virulence phenotypes such as antibiotic resistance (modA2, modA5, modA10), biofilm formation (modA2) and immunoevasion (modA4). Analyses of a modA2 strain in the chinchilla model of otitis media show a clear selection for ON switching of modA2 in the middle ear. Our results indicate that a biphasic epigenetic switch can control bacterial virulence, immunoevasion and niche adaptation in an animal model system.


Asunto(s)
Adaptación Fisiológica/genética , Metilación de ADN/genética , ADN Bacteriano/genética , Epigénesis Genética , Haemophilus influenzae/genética , Evasión Inmune/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Alelos , Animales , Secuencia de Bases , Biopelículas , Chinchilla , Modelos Animales de Enfermedad , Oído Medio , Haemophilus influenzae/inmunología , Haemophilus influenzae/patogenicidad , Datos de Secuencia Molecular , Otitis Media/microbiología , Virulencia/genética
17.
mBio ; 6(3): e00173, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26081630

RESUMEN

UNLABELLED: The human pathogen Streptococcus pneumoniae (pneumococcus) exhibits a high degree of genomic diversity and plasticity. Isolates with high genomic similarity are grouped into lineages that undergo homologous recombination at variable rates. PMEN1 is a pandemic, multidrug-resistant lineage. Heterologous gene exchange between PMEN1 and non-PMEN1 isolates is directional, with extensive gene transfer from PMEN1 strains and only modest transfer into PMEN1 strains. Restriction-modification (R-M) systems can restrict horizontal gene transfer, yet most pneumococcal strains code for either the DpnI or DpnII R-M system and neither limits homologous recombination. Our comparative genomic analysis revealed that PMEN1 isolates code for DpnIII, a third R-M system syntenic to the other Dpn systems. Characterization of DpnIII demonstrated that the endonuclease cleaves unmethylated double-stranded DNA at the tetramer sequence 5' GATC 3', and the cognate methylase is a C5 cytosine-specific DNA methylase. We show that DpnIII decreases the frequency of recombination under in vitro conditions, such that the number of transformants is lower for strains transformed with unmethylated DNA than in those transformed with cognately methylated DNA. Furthermore, we have identified two PMEN1 isolates where the DpnIII endonuclease is disrupted, and phylogenetic work by Croucher and colleagues suggests that these strains have accumulated genomic differences at a higher rate than other PMEN1 strains. We propose that the R-M locus is a major determinant of genetic acquisition; the resident R-M system governs the extent of genome plasticity. IMPORTANCE: Pneumococcus is one of the most important community-acquired bacterial pathogens. Pneumococcal strains can develop resistance to antibiotics and to serotype vaccines by acquiring genes from other strains or species. Thus, genomic plasticity is associated with strain adaptability and pneumococcal success. PMEN1 is a widespread and multidrug-resistant highly pathogenic pneumococcal lineage, which has evolved over the past century and displays a relatively stable genome. In this study, we characterize DpnIII, a restriction-modification (R-M) system that limits recombination. DpnIII is encountered in the PMEN1 lineage, where it replaces other R-M systems that do not decrease plasticity. Our hypothesis is that this genomic region, where different pneumococcal lineages code for variable R-M systems, plays a role in the fine-tuning of the extent of genomic plasticity. It is possible that well-adapted lineages such as PMEN1 have a mechanism to increase genomic stability, rather than foster genomic plasticity.


Asunto(s)
Enzimas de Restricción-Modificación del ADN , Streptococcus pneumoniae/enzimología , Streptococcus pneumoniae/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Transferencia de Gen Horizontal , Genotipo , Datos de Secuencia Molecular , Recombinación Genética , Análisis de Secuencia de ADN , Streptococcus pneumoniae/clasificación
18.
mBio ; 6(3): e00648, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26081634

RESUMEN

UNLABELLED: The genomic DNAs of tailed bacteriophages are commonly modified by the attachment of chemical groups. Some forms of DNA modification are known to protect phage DNA from cleavage by restriction enzymes, but others are of unknown function. Recently, the CRISPR-Cas nuclease complexes were shown to mediate bacterial adaptive immunity by RNA-guided target recognition, raising the question of whether phage DNA modifications may also block attack by CRISPR-Cas9. We investigated phage T4 as a model system, where cytosine is replaced with glucosyl-hydroxymethylcytosine (glc-HMC). We first quantified the extent and distribution of covalent modifications in T4 DNA by single-molecule DNA sequencing and enzymatic probing. We then designed CRISPR spacer sequences targeting T4 and found that wild-type T4 containing glc-HMC was insensitive to attack by CRISPR-Cas9 but mutants with unmodified cytosine were sensitive. Phage with HMC showed only intermediate sensitivity. While this work was in progress, another group reported examples of heavily engineered CRISRP-Cas9 complexes that could, in fact, overcome the effects of T4 DNA modification, indicating that modifications can inhibit but do not always fully block attack. IMPORTANCE: Bacteria were recently found to have a form of adaptive immunity, the CRISPR-Cas systems, which use nucleic acid pairing to recognize and cleave genomic DNA of invaders such as bacteriophage. Historic work with tailed phages has shown that phage DNA is often modified by covalent attachment of large chemical groups. Here we demonstrate that DNA modification in phage T4 inhibits attack by the CRISPR-Cas9 system. This finding provides insight into mechanisms of host-virus competition and also a new set of tools that may be useful in modulating the activity of CRISPR-Cas9 in genome engineering applications.


Asunto(s)
Bacteriófago T4/crecimiento & desarrollo , Bacteriófago T4/genética , Sistemas CRISPR-Cas , ADN Viral/química , ADN Viral/metabolismo , Escherichia coli/virología , Citosina/química , Citosina/metabolismo , ADN Viral/genética , Viabilidad Microbiana , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Ensayo de Placa Viral
19.
Nucleic Acids Res ; 43(18): e116, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26040699

RESUMEN

We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes.


Asunto(s)
Carcinogénesis/genética , Perfilación de la Expresión Génica , Fusión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Células MCF-7 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alineación de Secuencia
20.
Genome Announc ; 3(3)2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25953183

RESUMEN

The complete genome sequence of Bacillus subtilis T30 was determined by SMRT sequencing. The entire genome contains 4,138 predicted genes. The genome carries one intact prophage sequence (37.4 kb) similar to Bacillus phage SPBc2 and one incomplete prophage genome of 39.9 kb similar to Bacillus phage phi105.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...