Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(7): e0278737, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39078833

RESUMEN

Despite making up one of the most ecologically diverse groups of living birds, comprising soaring, diving and giant flightless taxa, the evolutionary relationships and ecological evolution of Anseriformes (waterfowl) remain unresolved. Although Anseriformes have a comparatively rich, global Cretaceous and Paleogene fossil record, morphological datasets for this group that include extinct taxa report conflicting relationships for all known extinct taxa. Correct placement of extinct taxa is necessary to understand whether ancestral anseriform feeding ecology was more terrestrial or one of a set of diverse aquatic ecologies and to better understand avian evolution around the K-T boundary. Here, we present a new morphological dataset for Anseriformes that includes more extant and extinct taxa than any previous anseriform-focused dataset and describe a new anseriform species from the early Eocene Green River Formation of North America. The new taxon has a mediolaterally narrow bill which is rarely found in previously described anseriform fossils. The matrix created to assess the placement of this taxon comprises 41 taxa and 719 discrete morphological characters describing skeletal morphology, musculature, syringeal morphology, ecology, and behavior. We additionally combine the morphological dataset with published sequences using Bayesian methods and perform ancestral state reconstruction for select morphological, ecological and behavioral characters. We recover the new Eocene taxon as the sister taxon to (Anseranatidae+Anatidae) across all analyses, and find that the new taxon represents a novel ecology within known Anseriformes and the Green River taxa. Results provide insight into avian evolution during and following the K-Pg mass extinction and indicate that Anseriformes were likely ancestrally aquatic herbivores with rhamphothecal lamellae..


Asunto(s)
Anseriformes , Evolución Biológica , Fósiles , Filogenia , Animales , Fósiles/anatomía & histología , Anseriformes/anatomía & histología , Anseriformes/clasificación , Anseriformes/genética , Aves/anatomía & histología , Aves/clasificación
2.
Curr Biol ; 34(3): 461-472.e7, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183987

RESUMEN

The origin of novel traits, those that are not direct modifications of a pre-existing ancestral structure, remains a fundamental problem in evolutionary biology. For example, little is known about the evolutionary and developmental origins of the novel avian vocal organ, the syrinx. Located at the tracheobronchial junction, the syrinx is responsible for avian vocalization, but it is unclear whether avian vocal folds are homologous to the laryngeal vocal folds in other tetrapods or convergently evolved. Here, we identify a core developmental program involved in avian vocal fold formation and infer the morphology of the syrinx of the ancestor of modern birds. We find that this ancestral syrinx had paired sound sources induced by a conserved developmental pathway and show that shifts in these signals correlate with syringeal diversification. We show that, despite being derived from different developmental tissues, vocal folds in the syrinx and larynx have similar tissue composition and are established through a strikingly similar developmental program, indicating that co-option of an ancestral developmental program facilitated the origin of vocal folds in the avian syrinx.


Asunto(s)
Laringe , Pliegues Vocales , Animales , Pliegues Vocales/anatomía & histología , Laringe/anatomía & histología , Aves/anatomía & histología , Tráquea/anatomía & histología , Sonido , Vocalización Animal
3.
J Anat ; 243(6): 1007-1023, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37515428

RESUMEN

Natal down is a feather stage that differs in both form and function from the definitive feathers of adult birds. It has a simpler structure that has been speculated to be similar to the body coverings of non-avian dinosaurs. However, inference of the evolution of natal down has been limited by our understanding of its structural variation in extant birds. Most descriptive work has focused on neognathous birds, limiting our knowledge of the full diversity of feathers in extant taxa. Here, we describe the natal down of a post-hatch ostrich (Struthio camelus) and compare it to that of a post-hatch quail (Coturnix coturnix). We confirm the presence of featherless spaces (apteria) in S. camelus and the lack of barbules on the tips of natal down in both species. We also find differences between dorsal and ventral natal down structures, such as barbule density in S. camelus and the extent of the bare portion of the barb in both species. Surprisingly, we do not find that the neoptiles of either species follow the ideal morphologies for increasing insulation. Finally, we hypothesize that the different barb types present in S. camelus natal down result from a large addition of new barb ridges during development, which is not known except in feathers with a rachis. These results have implications for our understanding of how structure informs function and development in understudied feather types, such as those shared by non-avian dinosaurs.


Asunto(s)
Dinosaurios , Struthioniformes , Animales , Evolución Biológica , Coturnix , Plumas , Codorniz
4.
Nurs Educ Perspect ; 2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36877737

RESUMEN

ABSTRACT: Nurse educators must weave discussions of systemic racism, social justice, social determinants of health, and psychosocial influences throughout the curriculum. For an online pediatric course, an activity was developed to raise awareness of implicit bias. This experience interfused assigned readings from the literature, introspection of identity, and guided discussion. Framed by principles of transformative learning, faculty facilitated an online dialogue involving groups of 5 to 10 students through aggregated self-descriptors and open prompts. Ground rules for the discussion established psychological safety. This activity complements other schoolwide racial justice initiatives.

5.
Nat Commun ; 14(1): 914, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854679

RESUMEN

The systematics of Madagascar's extinct elephant birds remains controversial due to large gaps in the fossil record and poor biomolecular preservation of skeletal specimens. Here, a molecular analysis of 1000-year-old fossil eggshells provides the first description of elephant bird phylogeography and offers insight into the ecology and evolution of these flightless giants. Mitochondrial genomes from across Madagascar reveal genetic variation that is correlated with eggshell morphology, stable isotope composition, and geographic distribution. The elephant bird crown is dated to ca. 30 Mya, when Madagascar is estimated to have become less arid as it moved northward. High levels of between-clade genetic variation support reclassifying Mullerornis into a separate family. Low levels of within-clade genetic variation suggest there were only two elephant bird genera existing in southern Madagascar during the Holocene. However, we find an eggshell collection from Madagascar's far north that represents a unique lineage of Aepyornis. Furthermore, divergence within Aepyornis coincides with the aridification of Madagascar during the early Pleistocene ca. 1.5 Ma, and is consistent with the fragmentation of populations in the highlands driving diversification and the evolution of extreme gigantism over shorts timescales. We advocate for a revision of their taxonomy that integrates palaeogenomic and palaeoecological perspectives.


Asunto(s)
Aves , Cáscara de Huevo , Fósiles , Animales , Aves/clasificación , Extinción Biológica
6.
Evolution ; 77(2): 342-354, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36611286

RESUMEN

High disparity among avian forelimb and hind limb segments in crown birds relative to non-avialan theropod dinosaurs, potentially driven by the origin of separate forelimb and hind limb locomotor modules, has been linked to the evolution of diverse avian locomotor behaviors. However, this hypothesized relationship has rarely been quantitatively investigated in a phylogenetic framework. We assessed the relationship between the evolution of limb morphology and locomotor behavior by comparing a numerical proxy for locomotor disparity to morphospace sizes derived from a dataset of 1,241 extant species. We then estimated how limb disparity accumulated during the crown avian radiation. Lastly, we tested whether limb segments evolved independently between each limb module using phylogenetically informed regressions. Hind limb disparity increased significantly with locomotor disparity after accounting for clade age and species richness. We found that forelimb disparity accumulated rapidly early in avian evolution, whereas hind limb disparity accumulated later, in more recent divergences. We recovered little support for strong correlations between forelimb and hind limb morphology. We posit that these findings support independent evolution of locomotor modules that enabled the striking morphological and behavioral disparity of extant birds.


Asunto(s)
Evolución Biológica , Dinosaurios , Animales , Filogenia , Miembro Anterior/anatomía & histología , Extremidad Inferior , Aves/anatomía & histología , Dinosaurios/anatomía & histología
7.
iScience ; 26(1): 105912, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36691618

RESUMEN

Currently known structural colors in feathers are caused by light scattering from periodic or amorphous arrangements of keratin, melanin, and air within barbs and barbules that comprise the feather vane. Structural coloration in the largest part of the feather, the central rachis, is rare. Here, we report on an investigation of the physical mechanisms underlying the only known case of structural coloration in the rachis, the blue rachis of great argus (Argusianus argus) flight feathers. Spectrophotometry revealed a reflectance peak at 344 nm that is diffuse and well matched to the blue and UV-sensitive cone sensitivities of this species' visual system. A combination of electron microscopy and optical modeling confirmed blue coloration is generated by scattering from amorphous wrinkle nanostructures 125 nm deep and 385 nm apart, a new avian coloration mechanism. These findings have implications for understanding how novel courtship phenotypes arise through evolutionary modification of existing ontogenetic templates.

8.
J Anat ; 241(3): 641-666, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35758681

RESUMEN

Reptile eggshell ensures water and gas exchange during incubation and plays a key role in reproductive success. The diversity of reptilian incubation and life history strategies has led to many clade-specific structural adaptations of their eggshell, which have been studied in extant taxa (i.e. birds, crocodilians, turtles, and lepidosaurs). Most studies on non-avian eggshells were performed over 30 years ago and categorized reptile eggshells into two main types: "hard" and "soft" - sometimes with a third intermediate category, "semi-rigid." In recent years, however, debate over the evolution of eggshell structure of major reptile clades has revealed how definitions of hard and soft eggshells influence inferred deep-time evolutionary patterns. Here, we review the diversity of extant and fossil eggshell with a focus on major reptile clades, and the criteria that have been used to define hard, soft, and semi-rigid eggshells. We show that all scoring approaches that retain these categories discretize continuous quantitative traits (e.g. eggshell thickness) and do not consider independent variation of other functionally important microstructural traits (e.g. degree of calcification, shell unit inner structure). We demonstrate the effect of three published approaches to discretizing eggshell type into hard, semi-rigid, and soft on ancestral state reconstructions using 200+ species representing all major extant and extinct reptile clades. These approaches result in different ancestral states for all major clades including Archosauria and Dinosauria, despite a difference in scoring for only 1-4% of the sample. Proposed scenarios of reptile eggshell evolution are highly conditioned by sampling, tree calibration, and lack of congruence between definitions of eggshell type. We conclude that the traditional "soft/hard/semi-rigid" classification of reptilian eggshells should be abandoned and provide guidelines for future descriptions focusing on specific functionally relevant characteristics (e.g. inner structures of shell units, pores, and membrane elements), analyses of these traits in a phylogenetic context, and sampling of previously undescribed taxa, including fossil eggs.


Asunto(s)
Dinosaurios , Cáscara de Huevo , Animales , Aves , Cáscara de Huevo/química , Fósiles , Filogenia , Reptiles
9.
Evolution ; 76(1): 42-57, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34719783

RESUMEN

Carotenoids are pigments responsible for most bright yellow, red, and orange hues in birds. Their distribution has been investigated in avian plumage, but the evolution of their expression in skin and other integumentary structures has not been approached in detail. Here, we investigate the expression of carotenoid-consistent coloration across tissue types in all extant, nonpasserine species (n = 4022) and archelosaur outgroups in a phylogenetic framework. We collect dietary data for a subset of birds and investigate how dietary carotenoid intake may relate to carotenoid expression in various tissues. We find that carotenoid-consistent expression in skin or nonplumage keratin has a 50% probability of being present in the most recent common ancestor of Archosauria. Skin expression has a similar probability at the base of the avian crown clade, but plumage expression is unambiguously absent in that ancestor and shows hundreds of independent gains within nonpasserine neognaths, consistent with previous studies. Although our data do not support a strict sequence of tissue expression in nonpasserine birds, we find support that expression of carotenoid-consistent color in nonplumage integument structures might evolve in a correlated manner and feathers are rarely the only region of expression. Taxa with diets high in carotenoid content also show expression in more body regions and tissue types. Our results may inform targeted assays for carotenoids in tissues other than feathers, and expectations of these pigments in nonavian dinosaurs. In extinct groups, bare-skin regions and the rhamphotheca, especially in species with diets rich in plants, may express these pigments, which are not expected in feathers or feather homologues.


Asunto(s)
Dinosaurios , Animales , Aves , Carotenoides/metabolismo , Plumas/metabolismo , Filogenia , Pigmentación
10.
Anat Rec (Hoboken) ; 305(7): 1563-1591, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34813153

RESUMEN

Of the more than 6,000 members of the most speciose avian clade, Passeriformes (perching birds), only the five species of dippers (Cinclidae, Cinclus) use their wings to swim underwater. Among nonpasserine wing-propelled divers (alcids, diving petrels, penguins, and plotopterids), convergent evolution of morphological characteristics related to this highly derived method of locomotion have been well-documented, suggesting that the demands of this behavior exert strong selective pressure. However, despite their unique anatomical attributes, dippers have been the focus of comparatively few studies and potential convergence between dippers and nonpasseriform wing-propelled divers has not been previously examined. In this study, a suite of characteristics that are shared among many wing-propelled diving birds were identified and the distribution of those characteristics across representatives of all clades of extant and extinct wing-propelled divers were evaluated to assess convergence. Putatively convergent characteristics were drawn from a relatively wide range of sources including osteology, myology, endocranial anatomy, integument, and ethology. Comparisons reveal that whereas nonpasseriform wing-propelled divers do in fact share some anatomical characteristics putatively associated with the biomechanics of underwater "flight", dippers have evolved this highly derived method of locomotion without converging on the majority of concomitant changes observed in other taxa. Changes in the flight musculature and feathers, reduction of the keratin bounded external nares and an increase in subcutaneous fat are shared with other wing-propelled diving birds, but endocranial anatomy shows no significant shifts and osteological modifications are limited. Muscular and integumentary novelties may precede skeletal and neuroendocranial morphology in the acquisition of this novel locomotory mode, with implications for understanding potential biases in the fossil record of other such transitions. Thus, dippers represent an example of a highly derived and complex behavioral convergence that is not fully associated with the anatomical changes observed in other wing-propelled divers, perhaps owing to the relative recency of their divergence from nondiving passeriforms.


Asunto(s)
Pájaros Cantores , Animales , Evolución Biológica , Vuelo Animal , Fósiles , Osteología , Natación , Alas de Animales/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...